Hossein Ghanbari List of Publications by Year in descending order Source: https://exaly.com/author-pdf/1263963/publications.pdf Version: 2024-02-01 80 papers 2,996 citations 230014 27 h-index 53 g-index 83 all docs 83 docs citations 83 times ranked 4454 citing authors | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 1 | Hybrid PCL/chitosan-PEO nanofibrous scaffolds incorporated with A. euchroma extract for skin tissue engineering application. Carbohydrate Polymers, 2022, 278, 118926. | 5.1 | 53 | | 2 | Biocompatibility study of P (N-isopropylacrylamide)-based nanocomposite and its cytotoxic effect on HeLa cells as a drug delivery system for Cisplatin. Journal of Drug Delivery Science and Technology, 2022, , 103254. | 1.4 | 0 | | 3 | Synergy of titanium dioxide nanotubes and polyurethane properties for bypass graft application: Excellent flexibility and biocompatibility. Materials and Design, 2022, 215, 110523. | 3.3 | 5 | | 4 | Improvement of sciatic nerve regeneration by multichannel nanofibrous membrane-embedded electro-conductive conduits functionalized with laminin. Journal of Materials Science: Materials in Medicine, 2022, 33, . | 1.7 | 7 | | 5 | Micro/nanoscale surface engineering to enhance hemocompatibility and reduce bacterial adhesion for cardiovascular implants. Materials Chemistry and Physics, 2022, 289, 126445. | 2.0 | 5 | | 6 | Synthesis of segmented polyurethanes containing different oligo segments: Experimental and computational approach. Progress in Organic Coatings, 2021, 150, 105965. | 1.9 | 7 | | 7 | Cell attachment effects of collagen nanoparticles on crosslinked electrospun nanofibers. International Journal of Artificial Organs, 2021, 44, 199-207. | 0.7 | 12 | | 8 | Fabrication and characterization of chitosan/kefiran electrospun nanofibers for tissue engineering applications. Journal of Applied Polymer Science, 2021, 138, 50547. | 1.3 | 21 | | 9 | Bismuth oxide nanoparticles as agents of radiation dose enhancement in intraoperative radiotherapy. Medical Physics, 2021, 48, 1417-1426. | 1.6 | 13 | | 10 | Dosimetric effect of nanoparticles in the breast cancer treatment using INTRABEAM (sup) \hat{A}^{\otimes} (sup) system with spherical applicators in the presence of tissue heterogeneities: A Monte Carlo study. Biomedical Physics and Engineering Express, 2021, 7, 035017. | 0.6 | 1 | | 11 | Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering. International Journal of Biological Macromolecules, 2021, 180, 590-598. | 3.6 | 71 | | 12 | Effect of Paclitaxel/etoposide co-loaded polymeric nanoparticles on tumor size and survival rate in a rat model of glioblastoma. International Journal of Pharmaceutics, 2021, 604, 120722. | 2.6 | 24 | | 13 | Assessment of structural, biological and drug release properties of electro-sprayed poly lactic acid-dexamethasone coating for biomedical applications. Biomedical Engineering Letters, 2021, 11, 393-406. | 2.1 | 5 | | 14 | Macrophage reprogramming into a pro-healing phenotype by siRNA delivered with LBL assembled nanocomplexes for wound healing applications. Nanoscale, 2021, 13, 15445-15463. | 2.8 | 15 | | 15 | The effect of surface modification of polyâ€lactideâ€∢scp> <i>co</i> â€glycolide/carbon nanotube nanofibrous scaffolds by laminin protein on nerve tissue engineering. Journal of Biomedical Materials Research - Part A, 2021, 109, 159-169. | 2.1 | 30 | | 16 | Exosome loaded alginate hydrogel promotes tissue regeneration in fullâ€thickness skin wounds: An in vivo study. Journal of Biomedical Materials Research - Part A, 2020, 108, 545-556. | 2.1 | 171 | | 17 | Resveratrol-loaded polyurethane nanofibrous scaffold: viability of endothelial and smooth muscle cells. Biomedical Materials (Bristol), 2020, 15, 015001. | 1.7 | 22 | | 18 | Predicting the effect of phototherapy method on breast cancer cells by mathematical modeling: UV-IR non-ionization radiation with gold nanoparticles. Nanotoxicology, 2020, 14, 1127-1136. | 1.6 | 1 | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 19 | Development of poly (mannitol sebacate)/poly (lactic acid) nanofibrous scaffolds with potential applications in tissue engineering. Materials Science and Engineering C, 2020, 110, 110626. | 3.8 | 26 | | 20 | A novel electrochemical immunosensor for ultrasensitive detection of CA125 in ovarian cancer. Biosensors and Bioelectronics, 2020, 153, 112029. | 5.3 | 81 | | 21 | Self-assembly of a patterned hydrophobic-hydrophilic surface by soft segment microphase separation in a segmented polyurethane: Combined experimental study and molecular dynamics simulation. Polymer, 2020, 195, 122424. | 1.8 | 21 | | 22 | Cross-linked PMS/PLA nanofibers with tunable mechanical properties and degradation rate for biomedical applications. European Polymer Journal, 2020, 130, 109633. | 2.6 | 8 | | 23 | In situ synthesized TiO2-polyurethane nanocomposite for bypass graft application: In vitro endothelialization and degradation. Materials Science and Engineering C, 2020, 114, 111043. | 3.8 | 6 | | 24 | Development of electrically conductive hybrid nanofibers based on CNTâ€polyurethane nanocomposite for cardiac tissue engineering. Microscopy Research and Technique, 2019, 82, 1316-1325. | 1.2 | 77 | | 25 | Bioinspired immobilization of carbon nanotubes on scaffolds for nerve regeneration. Bioinspired, Biomimetic and Nanobiomaterials, 2019, 8, 198-205. | 0.7 | 6 | | 26 | Nanofiber-acellular dermal matrix as a bilayer scaffold containing mesenchymal stem cell for healing of full-thickness skin wounds. Cell and Tissue Research, 2019, 375, 709-721. | 1.5 | 32 | | 27 | A novel polyurethane modified with biomacromolecules for small-diameter vascular graft applications. Journal of Materials Science, 2018, 53, 9913-9927. | 1.7 | 37 | | 28 | Heart valve tissue engineering: an overview of heart valve decellularization processes. Regenerative Medicine, 2018, 13, 41-54. | 0.8 | 36 | | 29 | <i>In vitro</i> physical and biological characterization of biodegradable elastic polyurethane containing ferulic acid for small-caliber vascular grafts. Biomedical Materials (Bristol), 2018, 13, 035007. | 1.7 | 24 | | 30 | Comparative study of different polymeric coatings for the next-generation magnesium-based biodegradable stents. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1380-1389. | 1.9 | 11 | | 31 | Will Nanotechnology Bring New Hope for Stem Cell Therapy?. Cells Tissues Organs, 2018, 206, 229-241. | 1.3 | 14 | | 32 | Novel electro-conductive nanocomposites based on electrospun PLGA/CNT for biomedical applications. Journal of Materials Science: Materials in Medicine, 2018, 29, 168. | 1.7 | 24 | | 33 | Polyurethane-Polycaprolactone Blend Patches: Scaffold Characterization and Cardiomyoblast Adhesion, Proliferation, and Function. ACS Biomaterials Science and Engineering, 2018, 4, 4299-4310. | 2.6 | 60 | | 34 | The effects of cross-linked/uncross-linked electrospun fibrinogen/polycaprolactone nanofibers on the proliferation of normal human epidermal keratinocytes. Journal of Polymer Engineering, 2018, 38, 945-953. | 0.6 | 4 | | 35 | Electrochemical immunosensor based on chitosan-gold nanoparticle/carbon nanotube as a platform and lactate oxidase as a label for detection of CA125 oncomarker. Biosensors and Bioelectronics, 2018, 122, 68-74. | 5.3 | 144 | | 36 | Reinforcing Mechanical Strength of Electrospun Chitosan Nanofibrous Scaffold Using Cellulose Nanofibers. Journal of Nano Research, 2018, 52, 71-79. | 0.8 | 3 | | # | Article | IF | Citations | |----|---|-----|-----------| | 37 | Differentiation of human endometrial stem cells into endothelial-like cells on gelatin/chitosan/bioglass nanofibrous scaffolds. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 163-173. | 1.9 | 38 | | 38 | Biocompatibility and nanostructured materials: applications in nanomedicine. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 833-842. | 1.9 | 155 | | 39 | Recent advances in simultaneous electrochemical multi-analyte sensing platforms. TrAC - Trends in Analytical Chemistry, 2017, 92, 32-41. | 5.8 | 65 | | 40 | A combined method for producing high strength and ductility magnesium microtubes for biodegradable vascular stents application. Journal of Alloys and Compounds, 2017, 723, 467-476. | 2.8 | 46 | | 41 | Biomimetic modification of polyurethane-based nanofibrous vascular grafts: A promising approach towards stable endothelial lining. Materials Science and Engineering C, 2017, 80, 213-221. | 3.8 | 70 | | 42 | Fluorescent multi-responsive cross-linked P(N-isopropylacrylamide)-based nanocomposites for cisplatin delivery. Drug Development and Industrial Pharmacy, 2017, 43, 1283-1291. | 0.9 | 22 | | 43 | The potential therapeutic effect of melatonin on human ovarian cancer by inhibition of invasion and migration of cancer stem cells. Scientific Reports, 2017, 7, 17062. | 1.6 | 87 | | 44 | Novel heart valve prosthesis with self-endothelialization potential made of modified polyhedral oligomeric silsesquioxane-nanocomposite material. Biointerphases, 2016, 11, 029801. | 0.6 | 16 | | 45 | Electrospun PLLA nanofiber scaffolds for bladder smooth muscle reconstruction. International Urology and Nephrology, 2016, 48, 1097-1104. | 0.6 | 27 | | 46 | Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process. Materials Science and Engineering C, 2016, 69, 1248-1255. | 3.8 | 33 | | 47 | Synthesis and characterization of polyhedral oligomeric titanized silsesquioxane: A new biocompatible cage like molecule for biomedical application. Materials Science and Engineering C, 2016, 61, 293-300. | 3.8 | 25 | | 48 | Inducible expression of indoleamine 2,3-dioxygenase attenuates acute rejection of tissue-engineered lung allografts in rats. Gene, 2016, 576, 412-420. | 1.0 | 11 | | 49 | The Differentiation of Human Endometrial Stem Cells into Neuron-Like Cells on Electrospun
PAN-Derived Carbon Nanofibers with Random and Aligned Topographies. Molecular Neurobiology,
2016, 53, 4798-4808. | 1.9 | 52 | | 50 | Correlation of Signal Intensity and ICP/OES-Related Concentration of Gadolinium-based Nanomagnetic Particles in Molecular MRI: In Vitro Study. Applied Magnetic Resonance, 2016, 47, 77-86. | 0.6 | 3 | | 51 | Physically Blended and Chemically Modified Polyurethane Hybrid Nanocoatings Using Polyhedral Oligomeric Silsesquioxane Nano Building Blocks: Surface Studies and Biocompatibility Evaluations. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 1305-1312. | 1.9 | 24 | | 52 | Optimization of Self-Assembled Chitosan/Streptokinase Nanoparticles and Evaluation of Their Cytotoxicity and Thrombolytic Activity. Journal of Nanoscience and Nanotechnology, 2015, 15, 10127-10133. | 0.9 | 17 | | 53 | Detailed mechanism of aniline nucleation into more conductive nanofibers. Synthetic Metals, 2015, 209, 91-98. | 2.1 | 12 | | 54 | Functionalization of PAN-Based Electrospun Carbon Nanofibers by Acid Oxidation: Study of Structural, Electrical and Mechanical Properties. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 930-937. | 1.0 | 20 | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 55 | Preparation of Pure PLLA, Pure Chitosan, and PLLA/Chitosan Blend Porous Tissue Engineering
Scaffolds by Thermally Induced Phase Separation Method and Evaluation of the Corresponding
Mechanical and Biological Properties. International Journal of Polymeric Materials and Polymeric
Biomaterials, 2015, 64, 675-682. | 1.8 | 41 | | 56 | Computational fluorescence ghost imaging. European Physical Journal D, 2013, 67, 1. | 0.6 | 18 | | 57 | Optical properties of layered organic-inorganic perovskite
(CH <inf>3</inf> NH <inf>3</inf>) <inf>2</inf> PbBr <inf>4</inf> .,
2013,,. | | 0 | | 58 | A New Generation of Aortic Valve Prosthesis: Design, Manufacture and Hydrodynamic Assessment. , 2012, , . | | 0 | | 59 | Manufacturing and hydrodynamic assessment of a novel aortic valve made of a new nanocomposite polymer. Journal of Biomechanics, 2012, 45, 1205-1211. | 0.9 | 85 | | 60 | Substrate engineering for Ni-assisted growth of carbon nano-tubes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 1542-1546. | 1.7 | 15 | | 61 | Tissueâ€Engineered Heart Valve: Future of Cardiac Surgery. World Journal of Surgery, 2012, 36, 1581-1591. | 0.8 | 77 | | 62 | Biomedical Application of Polyhedral Oligomeric Silsesquioxane Nanoparticles. Advances in Silicon Science, 2011, , 363-399. | 0.6 | 9 | | 63 | Cardiovascular application of polyhedral oligomeric silsesquioxane nanomaterials: a glimpse into prospective horizons. International Journal of Nanomedicine, 2011, 6, 775. | 3.3 | 66 | | 64 | Fantastic Improvement in Quality and Quantity of Carbon Nanotubes Synthesized on Al ₂ O ₃ –SiO ₂ Supports by N ₂ Pretreatment. Journal of Nanoscience and Nanotechnology, 2011, 11, 8835-8843. | 0.9 | 2 | | 65 | Small calibre polyhedral oligomeric silsesquioxane nanocomposite cardiovascular grafts: Influence of porosity on the structure, haemocompatibility and mechanical properties. Acta Biomaterialia, 2011, 7, 3857-3867. | 4.1 | 86 | | 66 | A Nanocage for Nanomedicine: Polyhedral Oligomeric Silsesquioxane (POSS). Macromolecular Rapid Communications, 2011, 32, 1032-1046. | 2.0 | 246 | | 67 | The anti-calcification potential of a silsesquioxane nanocomposite polymer under in vitro conditions: Potential material for synthetic leaflet heart valvea *†. Acta Biomaterialia, 2010, 6, 4249-4260. | 4.1 | 90 | | 68 | Even/Odd Mode Resonance Frequency of Microstrip Ring Resonator with Proximity and Direct In-Plane Coupling by Partial Positional Dielectric Strip Overlay Perturbation. Japanese Journal of Applied Physics, 2009, 48, 081405. | 0.8 | 1 | | 69 | Polymeric heart valves: new materials, emerging hopes. Trends in Biotechnology, 2009, 27, 359-367. | 4.9 | 194 | | 70 | A novel nanocomposite polymer for development of synthetic heart valve leaflets. Acta Biomaterialia, 2009, 5, 2409-2417. | 4.1 | 148 | | 71 | Even/odd mode resonance frequency of electromagnetically coupled microstrip ring resonator with flexible positional overlay of dielectric strips. Microwave and Optical Technology Letters, 2008, 50, 1931-1934. | 0.9 | 2 | | 72 | Percutaneous Heart Valve Replacement: An Update. Trends in Cardiovascular Medicine, 2008, 18, 117-125. | 2.3 | 15 | | # | Article | IF | CITATION | |----|--|-----|----------| | 73 | Direct Determination of X-Band Permittivity of Dielectrics by Partial Overlay on Electromagnetically Coupled Microstrip Ring Resonator. Japanese Journal of Applied Physics, 2007, 46, 3676-3680. | 0.8 | 4 | | 74 | Sexual Risk-Taking Behaviors among Boys Aged 15–18 Years in Tehran. Journal of Adolescent Health, 2007, 41, 407-414. | 1.2 | 66 | | 75 | Electromagnetically coupled microstrip square/circular ring resonators: Inset/offset feed variation effects on resonance frequency. Microwave and Optical Technology Letters, 2007, 49, 2118-2121. | 0.9 | 2 | | 76 | Synthesis of carbon nanotubes on alumina-based supports with different gas flow rates by CCVD method. Journal of Physics: Conference Series, 2006, 26, 135-138. | 0.3 | 12 | | 77 | Synthesis and characterization of nm-sized PbTiO3 crystallites. Journal of Materials Science: Materials in Electronics, 2006, 17, 361-365. | 1.1 | 0 | | 78 | Electromagnetically coupled microstrip square ring resonator: Inset/offset feed variation effects on resonance frequency. Microwave and Optical Technology Letters, 2006, 48, 1922-1924. | 0.9 | 5 | | 79 | Artificial Neural Networks Modeling of Electrospun Polyurethane Nanofibers from Chloroform/Methanol Solution. Journal of Nano Research, 0, 41, 18-30. | 0.8 | 8 | | 80 | Enhanced hemocompatibility of a PEGilated polycarbonate based segmented polyurethane. International Journal of Polymeric Materials and Polymeric Biomaterials, 0, , 1-9. | 1.8 | 4 |