List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1263897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Switchable <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si32.svg"><mml:mrow><mml:mi>î²</mml:mi></mml:mrow></mml:math> -lactoglobulin (BLG) adsorption on protein resistant oligo (ethylene glycol) (OEG) self-assembled monolayers (SAMs). Journal of Colloid and Interface Science, 2022, 606, 1673-1683.	9.4	5
2	Molecular Basis of Rhodomyrtone Resistance in Staphylococcus aureus. MBio, 2022, 13, e0383321.	4.1	7
3	Reverse-engineering method for XPCS studies of non-equilibrium dynamics. IUCrJ, 2022, 9, 439-448.	2.2	4
4	Automated matching of two-time X-ray photon correlation maps from phase-separating proteins with Cahn–Hilliard-type simulations using auto-encoder networks. Journal of Applied Crystallography, 2022, 55, 751-757.	4.5	6
5	Bulk Phase Behavior vs Interface Adsorption: Specific Multivalent Cation and Anion Effects on BSA Interactions. Langmuir, 2021, 37, 139-150.	3.5	22
6	Temperature and salt controlled tuning of protein clusters. Soft Matter, 2021, 17, 8506-8516.	2.7	7
7	Nonclassical Nucleation—Role of Metastable Intermediate Phase in Crystal Nucleation: An Editorial Prefix. Crystals, 2021, 11, 174.	2.2	6
8	Nematic Phase of Plate-like Semicrystalline Block Copolymer Single Crystals in Solution Studied by Small-Angle X-Ray Scattering. Langmuir, 2021, 37, 2397-2405.	3.5	1
9	Kinetics of Network Formation and Heterogeneous Dynamics of an Egg White Gel Revealed by Coherent X-Ray Scattering. Physical Review Letters, 2021, 126, 098001.	7.8	28
10	Microscopic Dynamics of Liquid-Liquid Phase Separation and Domain Coarsening in a Protein Solution Revealed by X-Ray Photon Correlation Spectroscopy. Physical Review Letters, 2021, 126, 138004.	7.8	38
11	Interplay between Kinetics and Dynamics of Liquid–Liquid Phase Separation in a Protein Solution Revealed by Coherent X-ray Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 7085-7090.	4.6	8
12	Human versus Bovine Serum Albumin: A Subtle Difference in Hydrophobicity Leads to Large Differences in Bulk and Interface Behavior. Crystal Growth and Design, 2021, 21, 5451-5459.	3.0	34
13	Bulk phase behaviour vs interface adsorption: Effects of anions and isotopes on β-lactoglobulin (BLG) interactions. Journal of Colloid and Interface Science, 2021, 598, 430-443.	9.4	3
14	Molecular Flexibility of Antibodies Preserved Even in the Dense Phase after Macroscopic Phase Separation. Molecular Pharmaceutics, 2021, 18, 4162-4169.	4.6	10
15	Protein Crystallization from a Preordered Metastable Intermediate Phase Followed by Real-Time Small-Angle Neutron Scattering. Crystal Growth and Design, 2021, 21, 6971-6980.	3.0	5
16	Packing and dynamics of a protein solution approaching the jammed state. Soft Matter, 2020, 16, 7751-7759.	2.7	0
17	Evolution of the structure and dynamics of bovine serum albumin induced by thermal denaturation. Physical Chemistry Chemical Physics, 2020, 22, 18507-18517.	2.8	20
18	Interplay between Glass Formation and Liquid–Liquid Phase Separation Revealed by the Scattering Invariant. Journal of Physical Chemistry Letters, 2020, 11, 7273-7278.	4.6	17

#	Article	IF	CITATIONS
19	Protein Crystallization in the Presence of a Metastable Liquid–Liquid Phase Separation. Crystal Growth and Design, 2020, 20, 7951-7962.	3.0	17
20	Enhanced protein adsorption upon bulk phase separation. Scientific Reports, 2020, 10, 10349.	3.3	11
21	Unification of lower and upper critical solution temperature phase behavior of globular protein solutions in the presence of multivalent cations. Soft Matter, 2020, 16, 2128-2134.	2.7	9
22	Following Protein Dynamics in Real Time during Crystallization. Crystal Growth and Design, 2019, 19, 7036-7045.	3.0	8
23	Interplay between Stereocomplexation and Microphase Separation in PS- <i>b</i> -PLLA- <i>b</i> -PDLA Triblock Copolymers. Macromolecules, 2019, 52, 1004-1012.	4.8	13
24	Phase-Separation Kinetics in Protein–Salt Mixtures with Compositionally Tuned Interactions. Journal of Physical Chemistry B, 2019, 123, 1913-1919.	2.6	12
25	Dynamics of proteins in solution. Quarterly Reviews of Biophysics, 2019, 52, .	5.7	78
26	Protein Short-Time Diffusion in a Naturally Crowded Environment. Journal of Physical Chemistry Letters, 2019, 10, 1709-1715.	4.6	30
27	Neutron spectroscopy on protein solutions employing backscattering with an increased energy range. Physica B: Condensed Matter, 2019, 562, 31-35.	2.7	1
28	Tuning phase transitions of aqueous protein solutions by multivalent cations. Physical Chemistry Chemical Physics, 2018, 20, 27214-27225.	2.8	36
29	Reentrant Phase Behavior in Protein Solutions Induced by Multivalent Salts: Strong Effect of Anions Cl [–] Versus NO ₃ [–] . Journal of Physical Chemistry B, 2018, 122, 11978-11985.	2.6	33
30	Nanosecond Tracer Diffusion as a Probe of the Solution Structure and Molecular Mobility of Protein Assemblies: The Case of Ovalbumin. Journal of Physical Chemistry B, 2018, 122, 8343-8350.	2.6	16
31	Two time scales for self and collective diffusion near the critical point in a simple patchy model for proteins with floating bonds. Soft Matter, 2018, 14, 8006-8016.	2.7	7
32	Effective Interactions and Colloidal Stability of Bovine Î ³ -Globulin in Solution. Journal of Physical Chemistry B, 2017, 121, 5759-5769.	2.6	26
33	Crowding-Controlled Cluster Size in Concentrated Aqueous Protein Solutions: Structure, Self- and Collective Diffusion. Journal of Physical Chemistry Letters, 2017, 8, 2590-2596.	4.6	39
34	Strong Isotope Effects on Effective Interactions and Phase Behavior in Protein Solutions in the Presence of Multivalent Ions. Journal of Physical Chemistry B, 2017, 121, 1731-1739.	2.6	38
35	Multivalent-Ion-Activated Protein Adsorption Reflecting Bulk Reentrant Behavior. Physical Review Letters, 2017, 119, 228001.	7.8	33
36	Arrested and temporarily arrested states in a protein–polymer mixture studied by USAXS and VSANS. Soft Matter, 2017, 13, 8756-8765.	2.7	14

#	Article	IF	CITATIONS
37	Nonclassical nucleation pathways in protein crystallization. Journal of Physics Condensed Matter, 2017, 29, 443002.	1.8	37
38	Cation-Induced Hydration Effects Cause Lower Critical Solution Temperature Behavior in Protein Solutions. Journal of Physical Chemistry B, 2016, 120, 7731-7736.	2.6	49
39	Kinetics of liquid–liquid phase separation in protein solutions exhibiting LCST phase behavior studied by time-resolved USAXS and VSANS. Soft Matter, 2016, 12, 9334-9341.	2.7	53
40	Structural Evolution of Metastable Protein Aggregates in the Presence of Trivalent Salt Studied by (V)SANS and SAXS. Journal of Physical Chemistry B, 2016, 120, 5564-5571.	2.6	27
41	High-resolution neutron spectroscopy on protein solution samples. EPJ Web of Conferences, 2015, 83, 02005.	0.3	19
42	Hierarchical molecular dynamics of bovine serum albumin in concentrated aqueous solution below and above thermal denaturation. Physical Chemistry Chemical Physics, 2015, 17, 4645-4655.	2.8	48
43	Real-Time Observation of Nonclassical Protein Crystallization Kinetics. Journal of the American Chemical Society, 2015, 137, 1485-1491.	13.7	112
44	On the question of two-step nucleation in protein crystallization. Faraday Discussions, 2015, 179, 41-58.	3.2	56
45	Salt-Induced Universal Slowing Down of the Short-Time Self-Diffusion of a Globular Protein in Aqueous Solution. Journal of Physical Chemistry Letters, 2015, 6, 2577-2582.	4.6	30
46	Molecular self-assembly and clustering in nucleation processes: general discussion. Faraday Discussions, 2015, 179, 155-197.	3.2	10
47	Reentrant condensation, liquid–liquid phase separation and crystallization in protein solutions induced by multivalent metal ions. Pure and Applied Chemistry, 2014, 86, 191-202.	1.9	55
48	Gold nanoparticles decorated with oligo(ethylene glycol) thiols: Surface charges and interactions with proteins in solution. Journal of Colloid and Interface Science, 2014, 426, 31-38.	9.4	24
49	Protein cluster formation in aqueous solution in the presence of multivalent metal ions – a light scattering study. Soft Matter, 2014, 10, 894-902.	2.7	55
50	Nonclassical Pathways of Protein Crystallization in the Presence of Multivalent Metal Ions. Crystal Growth and Design, 2014, 14, 6357-6366.	3.0	25
51	Effective interactions in protein–salt solutions approaching liquid–liquid phase separation. Journal of Molecular Liquids, 2014, 200, 20-27.	4.9	50
52	Competing Salt Effects on Phase Behavior of Protein Solutions: Tailoring of Protein Interaction by the Binding of Multivalent Ions and Charge Screening. Journal of Physical Chemistry B, 2014, 118, 11365-11374.	2.6	35
53	Diffusion and Dynamics of γ-Globulin in Crowded Aqueous Solutions. Journal of Physical Chemistry B, 2014, 118, 7203-7209.	2.6	47
54	The role of serum proteins in Staphylococcus aureus adhesion to ethylene glycol coated surfaces. International Journal of Medical Microbiology, 2014, 304, 949-957.	3.6	13

#	Article	IF	CITATIONS
55	Ion-activated attractive patches as a mechanism for controlled protein interactions. Scientific Reports, 2014, 4, 7016.	3.3	94
56	Influence of particle size and tunable interactions on isotropic–nematic transition of block copolymer single crystal platelet suspensions. Journal of Colloid and Interface Science, 2013, 411, 53-60.	9.4	5
57	Interplay of pH and Binding of Multivalent Metal Ions: Charge Inversion and Reentrant Condensation in Protein Solutions. Journal of Physical Chemistry B, 2013, 117, 5777-5787.	2.6	97
58	Dynamics of highly concentrated protein solutions around the denaturing transition. Soft Matter, 2012, 8, 1628-1633.	2.7	32
59	The role of cluster formation and metastable liquid—liquid phase separation in protein crystallization. Faraday Discussions, 2012, 159, 313.	3.2	70
60	Charge-controlled metastable liquid–liquid phase separation in protein solutions as a universal pathway towards crystallization. Soft Matter, 2012, 8, 1313-1316.	2.7	83
61	Hydration and interactions in protein solutions containing concentrated electrolytes studied by small-angle scattering. Physical Chemistry Chemical Physics, 2012, 14, 2483.	2.8	82
62	Viscosity and diffusion: crowding and salt effects in protein solutions. Soft Matter, 2012, 8, 1404-1419.	2.7	86
63	Melting and van der Waals Stabilization of PE Single Crystals Grown from Ultrathin Films. Macromolecules, 2011, 44, 7752-7757.	4.8	11
64	Novel approach to controlled protein crystallization through ligandation of yttrium cations. Journal of Applied Crystallography, 2011, 44, 755-762.	4.5	57
65	Protein self-diffusion in crowded solutions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11815-11820.	7.1	207
66	Protein diffusion in crowded electrolyte solutions. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 68-75.	2.3	37
67	Universality of protein reentrant condensation in solution induced by multivalent metal ions. Proteins: Structure, Function and Bioinformatics, 2010, 78, 3450-3457.	2.6	106
68	Proteinâ~'Protein Interactions in Ovalbumin Solutions Studied by Small-Angle Scattering: Effect of Ionic Strength and the Chemical Nature of Cations. Journal of Physical Chemistry B, 2010, 114, 3776-3783.	2.6	95
69	Gold Nanoparticles Decorated with Oligo(ethylene glycol) Thiols: Enhanced Hofmeister Effects in Colloidâ^'Protein Mixtures. Journal of Physical Chemistry C, 2009, 113, 4839-4847.	3.1	25
70	Gold nanoparticles decorated with oligo(ethylene glycol) thiols: kinetics of colloid aggregation driven by depletion forces. European Biophysics Journal, 2008, 37, 551-561.	2.2	22
71	Reentrant Condensation of Proteins in Solution Induced by Multivalent Counterions. Physical Review Letters, 2008, 101, 148101.	7.8	184
72	Competition of Lamellar Orientation in Thin Films of a Symmetric Poly(styrene)- <i>b</i> -poly(<scp>l</scp> -lactide) Diblock Copolymer in Melt State. Macromolecules, 2007, 40, 6631-6637.	4.8	22

#	Article	IF	CITATIONS
73	Gold Nanoparticles Decorated with Oligo(ethylene glycol) Thiols:Â Protein Resistance and Colloidal Stabilityâ€. Journal of Physical Chemistry A, 2007, 111, 12229-12237.	2.5	50
74	Protein Interactions Studied by SAXS:Â Effect of Ionic Strength and Protein Concentration for BSA in Aqueous Solutions. Journal of Physical Chemistry B, 2007, 111, 251-259.	2.6	252
75	Effect of Crystallization on the Lamellar Orientation in Thin Films of Symmetric Poly(styrene)-b-poly(l-lactide) Diblock Copolymer. Macromolecules, 2006, 39, 4101-4107.	4.8	25
76	Composition fluctuation and domain spacing of low molar weight PEO–PPO–PEO triblock copolymers in the melt, during crystallization and in the solid state. Colloid and Polymer Science, 2006, 284, 823-833.	2.1	17
77	Partial Dewetting of Polyethylene Thin Films on Rough Silicon Dioxide Surfaces. Langmuir, 2005, 21, 7427-7432.	3.5	26
78	Morphology and Structure of Poly(di-n-butylsilane) Single Crystals Prepared by Controlling Kinetic Process of Solvent Evaporation. Macromolecules, 2004, 37, 3310-3318.	4.8	12
79	Effects of Casting Solvents on the Formation of Inverted Phase in Block Copolymer Thin Films. Macromolecules, 2004, 37, 6523-6530.	4.8	68
80	Thickness-dependent molecular chain and lamellar crystal orientation in ultrathin poly(di-n-hexylsilane) films. Langmuir, 2004, 20, 3271-7.	3.5	4
81	Morphology and Structures of Self-Assembled Symmetric Poly(di-n-alkylsilanes). Langmuir, 2003, 19, 9013-9017.	3.5	15
82	Multiple melting behavior of isotactic polypropylene and poly(propylene-co-ethylene) after stepwise isothermal crystallization. European Polymer Journal, 2003, 39, 2315-2322.	5.4	19
83	Study on the Origin of Inverted Phase in Drying Solution-Cast Block Copolymer Films. Macromolecules, 2003, 36, 4084-4092.	4.8	53
84	Crystallization of Weakly Segregated Poly(styrene-b-ε-caprolactone) Diblock Copolymer in Thin Films. Langmuir, 2003, 19, 10100-10108.	3.5	21
85	Boundary Effect of Relief Structure on Crystallization of Diblock Copolymer in Thin Films. Langmuir, 2003, 19, 5563-5566.	3.5	23
86	Polydispersity of ethylene sequence length in metallocene ethylene/?-olefin copolymers. I. Characterized by thermal-fractionation technique. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 813-821.	2.1	24
87	Polydispersity of ethylene sequence length in metallocene ethylene/?-olefin copolymers. II. Influence on crystallization and melting behavior. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 822-830.	2.1	17
88	The polydispersity of ethylene sequence in metallocene ethylene/α-olefin copolymers III: crystallization and melting behavior of short ethylene sequence. Polymer, 2002, 43, 1453-1460.	3.8	17
89	In situ study of nanostructure and morphological development during the crystal–mesophase transition of poly(di-n-hexylsilane) and poly(di-n-butylsilane) by X-ray and hot-stage AFM. Polymer, 2002, 43, 6005-6012.	3.8	2
90	Improved thermal fractionation technique for chain structure analysis of ethylene/ \hat{I} ±-olefin copolymers. Polymer, 2002, 43, 1031-1034.	3.8	35

#	Article	IF	CITATIONS
91	Study on single crystals of butyl branched polyethylene in the presence of electric field. Polymer, 2002, 43, 1903-1906.	3.8	2
92	Morphologies of metallocene-catalyzed short chain branched polyethylene single crystals formed from the melt at higher temperature. Polymer, 2001, 42, 5449-5452.	3.8	3
93	Observation of Twisting Growth of Branched Polyethylene Single Crystals Formed from the Melt. Macromolecular Rapid Communications, 2001, 22, 1340-1343.	3.9	14
94	Lateral habits of single crystals of metallocene-catalyzed low molecular weight short chain branched polyethylene from the melt. Polymer, 2000, 41, 8573-8577.	3.8	4
95	Observation of Inverted Phases in Poly(styrene-b-butadiene-b-styrene) Triblock Copolymer by Solvent-Induced Orderâ^'Disorder Phase Transition. Macromolecules, 2000, 33, 9561-9567.	4.8	101