Daniela Valenti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1263438/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impaired Brain Mitochondrial Bioenergetics in the Ts65Dn Mouse Model of Down Syndrome Is Restored by Neonatal Treatment with the Polyphenol 7,8-Dihydroxyflavone. Antioxidants, 2022, 11, 62.	5.1	12
2	Mitochondrial Bioenergetics in Different Pathophysiological Conditions 2.0. International Journal of Molecular Sciences, 2022, 23, 5552.	4.1	1
3	Epigallocatechin-3-Gallate Plus Omega-3 Restores the Mitochondrial Complex I and F0F1-ATP Synthase Activities in PBMCs of Young Children with Down Syndrome: A Pilot Study of Safety and Efficacy. Antioxidants, 2021, 10, 469.	5.1	15
4	A Walk in the Memory, from the First Functional Approach up to Its Regulatory Role of Mitochondrial Bioenergetic Flow in Health and Disease: Focus on the Adenine Nucleotide Translocator. International Journal of Molecular Sciences, 2021, 22, 4164.	4.1	14
5	Treatment with the Bacterial Toxin CNF1 Selectively Rescues Cognitive and Brain Mitochondrial Deficits in a Female Mouse Model of Rett Syndrome Carrying a MeCP2-Null Mutation. International Journal of Molecular Sciences, 2021, 22, 6739.	4.1	5
6	Mitochondria Can Cross Cell Boundaries: An Overview of the Biological Relevance, Pathophysiological Implications and Therapeutic Perspectives of Intercellular Mitochondrial Transfer. International Journal of Molecular Sciences, 2021, 22, 8312.	4.1	61
7	Aberrant mitochondrial bioenergetics in the cerebral cortex of the <i>Fmr1</i> knockout mouse model of fragile X syndrome. Biological Chemistry, 2020, 401, 497-503.	2.5	30
8	The Anti-Diabetic Drug Metformin Rescues Aberrant Mitochondrial Activity and Restrains Oxidative Stress in a Female Mouse Model of Rett Syndrome. Journal of Clinical Medicine, 2020, 9, 1669.	2.4	17
9	Brain-Immune Alterations and Mitochondrial Dysfunctions in a Mouse Model of Paediatric Autoimmune Disorder Associated with Streptococcus: Exacerbation by Chronic Psychosocial Stress. Journal of Clinical Medicine, 2019, 8, 1514.	2.4	2
10	Down syndrome: Neurobiological alterations and therapeutic targets. Neuroscience and Biobehavioral Reviews, 2019, 98, 234-255.	6.1	63
11	Rescue of prepulse inhibition deficit and brain mitochondrial dysfunction by pharmacological stimulation of the central serotonin receptor 7 in a mouse model of CDKL5 Deficiency Disorder. Neuropharmacology, 2019, 144, 104-114.	4.1	25
12	Mitochondria as pharmacological targets in Down syndrome. Free Radical Biology and Medicine, 2018, 114, 69-83.	2.9	79
13	Activation of the Calcium-Sensing Receptor Corrects the Impaired Mitochondrial Energy Status Observed in Renal Polycystin-1 Knockdown Cells Modeling Autosomal Dominant Polycystic Kidney Disease. Frontiers in Molecular Biosciences, 2018, 5, 77.	3.5	17
14	Stimulation of the brain serotonin receptor 7 rescues mitochondrial dysfunction in female mice from two models of Rett syndrome. Neuropharmacology, 2017, 121, 79-88.	4.1	43
15	Inhibition of Drp1-mediated mitochondrial fission improves mitochondrial dynamics and bioenergetics stimulating neurogenesis in hippocampal progenitor cells from a Down syndrome mouse model. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 3117-3127.	3.8	37
16	Plant polyphenols as natural drugs for the management of Down syndrome and related disorders. Neuroscience and Biobehavioral Reviews, 2016, 71, 865-877.	6.1	49
17	The polyphenols resveratrol and epigallocatechin-3-gallate restore the severe impairment of mitochondria in hippocampal progenitor cells from a Down syndrome mouse model. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1093-1104.	3.8	96
18	Green tea EGCG plus fish oil omega-3 dietary supplements rescue mitochondrial dysfunctions and are safe in a Down's syndrome child. Clinical Nutrition, 2015, 34, 783-784.	5.0	31

DANIELA VALENTI

#	Article	IF	CITATIONS
19	Mitochondrial free radical overproduction due to respiratory chain impairment in the brain of a mouse model of Rett syndrome: protective effect of CNF1. Free Radical Biology and Medicine, 2015, 83, 167-177.	2.9	65
20	Modulation of Rho GTPases rescues brain mitochondrial dysfunction, cognitive deficits and aberrant synaptic plasticity in female mice modeling Rett syndrome. European Neuropsychopharmacology, 2015, 25, 889-901.	0.7	41
21	3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system. Journal of Bioenergetics and Biomembranes, 2015, 47, 493-506.	2.3	34
22	Mitochondrial dysfunction as a central actor in intellectual disability-related diseases: An overview of Down syndrome, autism, Fragile X and Rett syndrome. Neuroscience and Biobehavioral Reviews, 2014, 46, 202-217.	6.1	151
23	Preservation of mitochondrial functional integrity in mitochondria isolated from small cryopreserved mouse brain areas. Analytical Biochemistry, 2014, 444, 25-31.	2.4	22
24	Epigallocatechin-3-gallate prevents oxidative phosphorylation deficit and promotes mitochondrial biogenesis in human cells from subjects with Down's syndrome. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 542-552.	3.8	124
25	Negative modulation of mitochondrial oxidative phosphorylation by epigallocatechin-3 gallate leads to growth arrest and apoptosis in human malignant pleural mesothelioma cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 2085-2096.	3.8	56
26	Mitochondrial respiratory chain Complexes I and IV are impaired by β-amyloid via direct interaction and through Complex I-dependent ROS production, respectively. Mitochondrion, 2013, 13, 298-311.	3.4	117
27	Estrogen receptor Î ² activation impairs mitochondrial oxidative metabolism and affects malignant mesothelioma cell growth in vitro and in vivo. Oncogenesis, 2013, 2, e72-e72.	4.9	34
28	Deficit of complexÂl activity in human skin fibroblasts with chromosome 21 trisomy and overproduction of reactive oxygen species by mitochondria: involvement of the cAMP/PKA signalling pathway. Biochemical Journal, 2011, 435, 679-688.	3.7	115
29	Impairment of F1F0-ATPase, adenine nucleotide translocator and adenylate kinase causes mitochondrial energy deficit in human skin fibroblasts with chromosome 21 trisomy. Biochemical Journal, 2010, 431, 299-310.	3.7	76
30	<scp>l</scp> ‣actate generates hydrogen peroxide in purified rat liver mitochondria due to the putative <scp>l</scp> ″actate oxidase localized in the intermembrane space. FEBS Letters, 2010, 584, 2285-2290.	2.8	28
31	A transient proteasome activation is needed for acetic acid-induced programmed cell death to occur in Saccharomyces cerevisiae. FEMS Yeast Research, 2008, 8, 400-404.	2.3	16
32	Mitochondria and <scp>l</scp> â€lactate metabolism. FEBS Letters, 2008, 582, 3569-3576.	2.8	139
33	Proteasome function is required for activation of programmed cell death in heat shocked tobacco Bright-Yellow 2 cells. FEBS Letters, 2007, 581, 917-922.	2.8	35
34	In the early phase of programmed cell death in Tobacco Bright Yellow 2 cells the mitochondrial adenine nucleotide translocator, adenylate kinase and nucleoside diphosphate kinase are impaired in a reactive oxygen species-dependent manner. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 66-78.	1.0	29
35	Phosphoenolpyruvate metabolism in Jerusalem artichoke mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 281-294.	1.0	10
36	Cytochrome c Is Released in a Reactive Oxygen Species-Dependent Manner and Is Degraded via Caspase-Like Proteases in Tobacco Bright-Yellow 2 Cells en Route to Heat Shock-Induced Cell Death. Plant Physiology, 2006, 141, 208-219.	4.8	197

DANIELA VALENTI

#	Article	IF	CITATIONS
37	Jerusalem artichoke mitochondria can export reducing equivalents in the form of malate as a result of d-lactate uptake and metabolism. Biochemical and Biophysical Research Communications, 2005, 335, 1224-1230.	2.1	10
38	Transport and metabolism of d-lactate in Jerusalem artichoke mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1708, 13-22.	1.0	30
39	Production of Reactive Oxygen Species, Alteration of Cytosolic Ascorbate Peroxidase, and Impairment of Mitochondrial Metabolism Are Early Events in Heat Shock-Induced Programmed Cell Death in Tobacco Bright-Yellow 2 Cells. Plant Physiology, 2004, 134, 1100-1112.	4.8	361
40	Two separate pathways for d-lactate oxidation by Saccharomyces cerevisiae mitochondria which differ in energy production and carrier involvement. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1608, 104-113.	1.0	31
41	Partial reconstruction of in vitro gluconeogenesis arising from mitochondrial l-lactate uptake/metabolism and oxaloacetate export via novel l-lactate translocators. Biochemical Journal, 2004, 380, 231-242.	3.7	36
42	The role of mitochondrial transport in energy metabolism. Mitochondrion, 2003, 2, 319-343.	3.4	80
43	l-Lactate transport into rat heart mitochondria and reconstruction of the l-lactate/pyruvate shuttle. Biochemical Journal, 2002, 364, 101-104.	3.7	43
44	Inhibition of phosphate transport in rat heart mitochondria by 3′-azido-3′-deoxythymidine due to stimulation of superoxide anion mitochondrial production. Biochemical Pharmacology, 2002, 64, 201-206.	4.4	24
45	The riboflavin/FAD cycle in rat liver mitochondria. FEBS Journal, 2000, 267, 4888-4900.	0.2	81
46	Inhibition by α-Tocopherol and L-Ascorbate of Linoleate Hydroperoxidation and β-Carotene Bleaching Activities in Durum Wheat Semolina. Journal of Cereal Science, 2000, 31, 41-54.	3.7	40
47	A sensitive method to assay the xanthine oxidase activity in primary cultures of cerebellar granule cells. Brain Research Protocols, 2000, 6, 1-5.	1.6	15
48	Inhibition of nucleoside diphosphate kinase in rat liver mitochondria by added 3′-azido-3′-deoxythymidine. FEBS Letters, 1999, 444, 291-295.	2.8	26
49	Mitochondria as Cell Targets of AZT (Zidovudine). General Pharmacology, 1998, 31, 531-538.	0.7	61
50	Rat liver mitochondria can hydrolyse thiamine pyrophosphate to thiamine monophosphate which can cross the mitochondrial membrane in a carrier-mediated process. FEBS Letters, 1998, 435, 6-10.	2.8	15
51	3′-Azido-3′-deoxythymidine uptake into isolated rat liver mitochondria and impairment of ADP/ATP translocator. Biochemical Pharmacology, 1997, 53, 913-920.	4.4	85
52	Mechanisms of toxicity of 3′-azido-3′- deoxythymidine. Biochemical Pharmacology, 1994, 48, 1405-1412.	4.4	68