Sijie Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/126340/publications.pdf Version: 2024-02-01

SHIF CHEN

#	Article	IF	CITATIONS
1	A Photostable AIE Luminogen for Specific Mitochondrial Imaging and Tracking. Journal of the American Chemical Society, 2013, 135, 62-65.	13.7	695
2	Full-Range Intracellular pH Sensing by an Aggregation-Induced Emission-Active Two-Channel Ratiometric Fluorogen. Journal of the American Chemical Society, 2013, 135, 4926-4929.	13.7	394
3	Long-Term Fluorescent Cellular Tracing by the Aggregates of AIE Bioconjugates. Journal of the American Chemical Society, 2013, 135, 8238-8245.	13.7	357
4	Monitoring and Inhibition of Insulin Fibrillation by a Small Organic Fluorogen with Aggregation-Induced Emission Characteristics. Journal of the American Chemical Society, 2012, 134, 1680-1689.	13.7	351
5	Cytophilic Fluorescent Bioprobes for Longâ€Term Cell Tracking. Advanced Materials, 2011, 23, 3298-3302.	21.0	238
6	Benzothiazolium-functionalized tetraphenylethene: an AIE luminogen with tunable solid-state emission. Chemical Communications, 2012, 48, 8637.	4.1	205
7	Synthesis, solvatochromism, aggregation-induced emission and cell imaging of tetraphenylethene-containing BODIPY derivatives with large Stokes shifts. Chemical Communications, 2012, 48, 10099.	4.1	204
8	Fluorescent pH sensor constructed from a heteroatom-containing luminogen with tunable AIE and ICT characteristics. Chemical Science, 2013, 4, 3725.	7.4	198
9	Fabrication of fluorescent nanoparticles based on AIE luminogens (AIE dots) and their applications in bioimaging. Materials Horizons, 2016, 3, 283-293.	12.2	193
10	Self-Reporting and Photothermally Enhanced Rapid Bacterial Killing on a Laser-Induced Graphene Mask. ACS Nano, 2020, 14, 12045-12053.	14.6	191
11	Fluorogenic Zn(II) and Chromogenic Fe(II) Sensors Based on Terpyridine-Substituted Tetraphenylethenes with Aggregation-Induced Emission Characteristics. ACS Applied Materials & Interfaces, 2011, 3, 3411-3418.	8.0	189
12	An AIE-active hemicyanine fluorogen with stimuli-responsive red/blue emission: extending the pH sensing range by "switch + knob―effect. Chemical Science, 2012, 3, 1804.	7.4	171
13	Aggregation-induced red-NIR emission organic nanoparticles as effective and photostable fluorescent probes for bioimaging. Journal of Materials Chemistry, 2012, 22, 15128.	6.7	170
14	Tetraphenylethenyl-modified perylene bisimide: aggregation-induced red emission, electrochemical properties and ordered microstructures. Journal of Materials Chemistry, 2012, 22, 7387.	6.7	154
15	A red emitting mitochondria-targeted AIE probe as an indicator for membrane potential and mouse sperm activity. Chemical Communications, 2015, 51, 13599-13602.	4.1	136
16	Defect-sensitive crystals based on diaminomaleonitrile-functionalized Schiff base with aggregation-enhanced emission. Journal of Materials Chemistry C, 2013, 1, 7314.	5.5	124
17	Light-Enhanced Bacterial Killing and Wash-Free Imaging Based on AIE Fluorogen. ACS Applied Materials & Interfaces, 2015, 7, 7180-7188.	8.0	120
18	A Luminogen with Aggregationâ€Induced Emission Characteristics for Washâ€Free Bacterial Imaging, Highâ€Throughput Antibiotics Screening and Bacterial Susceptibility Evaluation. Advanced Materials, 2015, 27, 4931-4937.	21.0	111

#	Article	IF	CITATIONS
19	Highly Fluorescent and Photostable Probe for Longâ€Term Bacterial Viability Assay Based on Aggregationâ€Induced Emission. Advanced Healthcare Materials, 2014, 3, 88-96.	7.6	105
20	Real-time monitoring of the mitophagy process by a photostable fluorescent mitochondrion-specific bioprobe with AIE characteristics. Chemical Communications, 2015, 51, 9022-9025.	4.1	105
21	Nearâ€Infrared AIE Dots with Chemiluminescence for Deepâ€Tissue Imaging. Advanced Materials, 2020, 32, e2004685.	21.0	96
22	Design of self-assembly dipeptide hydrogels and machine learning via their chemical features. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11259-11264.	7.1	95
23	Mapping Live Cell Viscosity with an Aggregationâ€Induced Emission Fluorogen by Means of Twoâ€Photon Fluorescence Lifetime Imaging. Chemistry - A European Journal, 2015, 21, 4315-4320.	3.3	87
24	Biotin-decorated fluorescent silica nanoparticles with aggregation-induced emission characteristics: fabrication, cytotoxicity and biological applications. Journal of Materials Chemistry B, 2013, 1, 676-684.	5.8	86
25	A dual functional AEE fluorogen as a mitochondrial-specific bioprobe and an effective photosensitizer for photodynamic therapy. Chemical Communications, 2014, 50, 14451-14454.	4.1	79
26	Amphiphilic Tetraphenylethene-Based Pyridinium Salt for Selective Cell-Membrane Imaging and Room-Light-Induced Special Reactive Oxygen Species Generation. ACS Applied Materials & Interfaces, 2019, 11, 10567-10577.	8.0	79
27	Detection of oligomers and fibrils of α-synuclein by AlEgen with strong fluorescence. Chemical Communications, 2015, 51, 1866-1869.	4.1	75
28	Fluorogenic Ag ⁺ –Tetrazolate Aggregation Enables Efficient Fluorescent Biological Silver Staining. Angewandte Chemie - International Edition, 2018, 57, 5750-5753.	13.8	75
29	A Selective Glutathione Probe based on AIE Fluorogen and its Application in Enzymatic Activity Assay. Scientific Reports, 2015, 4, 4272.	3.3	73
30	Realâ€Time Imaging of Cell Behaviors in Living Organisms by a Mitochondriaâ€Targeting AlE Fluorogen. Advanced Functional Materials, 2016, 26, 7132-7138.	14.9	70
31	Fluorogenic Detection and Characterization of Proteins by Aggregationâ€Induced Emission Methods. Chemistry - A European Journal, 2019, 25, 5824-5847.	3.3	66
32	Waterâ€Soluble Tetraphenylethene Derivatives as Fluorescent "Lightâ€Up―Probes for Nucleic Acid Detection and Their Applications in Cell Imaging. Chemistry - an Asian Journal, 2013, 8, 1806-1812.	3.3	65
33	A Lysosomeâ€Targeting AlEgen for Autophagy Visualization. Advanced Healthcare Materials, 2016, 5, 427-431.	7.6	65
34	Fabrication of Chitosan Nanoparticles with Aggregationâ€Induced Emission Characteristics and Their Applications in Longâ€Term Live Cell Imaging. Macromolecular Rapid Communications, 2013, 34, 767-771.	3.9	63
35	Making the Best Use of Excited-State Energy: Multimodality Theranostic Systems Based on Second Near-Infrared (NIR-II) Aggregation-Induced Emission Luminogens (AlEgens). , 2020, 2, 1033-1040. –––––––––––––––––––––––––––––––––––		60
36	Superior Fluorescent Probe for Detection of Cardiolipin. Analytical Chemistry, 2014, 86, 1263-1268.	6.5	59

#	Article	IF	CITATIONS
37	A simple yet effective AIE-based fluorescent nano-thermometer for temperature mapping in living cells using fluorescence lifetime imaging microscopy. Nanoscale Horizons, 2020, 5, 488-494.	8.0	51
38	Functionalization of Silk by AlEgens through Facile Bioconjugation: Fullâ€Color Fluorescence and Longâ€Term Bioimaging. Angewandte Chemie - International Edition, 2021, 60, 12424-12430.	13.8	46
39	A tetraphenylethene-based caged compound: synthesis, properties and applications. Chemical Communications, 2014, 50, 8134-8136.	4.1	45
40	A Membraneâ€Targeting Photosensitizer with Aggregationâ€Induced Emission Characteristics for Highly Efficient Photodynamic Combat of Human Coronaviruses. Small, 2021, 17, e2101770.	10.0	45
41	Specific and Quantitative Detection of Albumin in Biological Fluids by Tetrazolate-Functionalized Water-Soluble AlEgens. ACS Applied Materials & Interfaces, 2019, 11, 29619-29629.	8.0	44
42	AlEgen-Based Fluorescent Nanomaterials: Fabrication and Biological Applications. Molecules, 2018, 23, 419.	3.8	37
43	A near-infrared AIE probe for super-resolution imaging and nuclear lipid droplet dynamic study. Materials Chemistry Frontiers, 2021, 5, 3043-3049.	5.9	37
44	Discrimination of homocysteine, cysteine and glutathione using an aggregation-induced-emission-active hemicyanine dye. Journal of Materials Chemistry B, 2014, 2, 3919-3923.	5.8	33
45	Ordered Honeycomb Structural Interfaces for Anticancer Cells Growth. Langmuir, 2013, 29, 14947-14953.	3.5	32
46	Fabrication of small organic luminogens honeycomb-structured films with aggregation-induced emission features. Journal of Materials Chemistry, 2012, 22, 15869.	6.7	29
47	Photostable AIE fluorogens for accurate and sensitive detection of S-phase DNA synthesis and cell proliferation. Journal of Materials Chemistry B, 2015, 3, 4993-4996.	5.8	29
48	A Smallâ€Molecule AIE Chromosome Periphery Probe for Cytogenetic Studies. Angewandte Chemie - International Edition, 2020, 59, 10327-10331.	13.8	29
49	Detection of adenine-rich ssDNA based on thymine-substituted tetraphenylethene with aggregation-induced emission characteristics. RSC Advances, 2014, 4, 33307.	3.6	28
50	Thiol-Reactive Molecule with Dual-Emission-Enhancement Property for Specific Prestaining of Cysteine Containing Proteins in SDS-PAGE. ACS Applied Materials & Interfaces, 2013, 5, 4613-4616.	8.0	26
51	A near-infrared AIE fluorescent probe for myelin imaging: From sciatic nerve to the optically cleared brain tissue in 3D. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	26
52	Fluorescence Imaging and Photodynamic Inactivation of Bacteria Based on Cationic Cyclometalated Iridium(III) Complexes with Aggregationâ€Induced Emission Properties. Advanced Healthcare Materials, 2021, 10, e2100706.	7.6	25
53	Novel super-resolution capable mitochondrial probe, MitoRed AIE, enables assessment of real-time molecular mitochondrial dynamics. Scientific Reports, 2016, 6, 30855.	3.3	23
54	A Red Lightâ€Triggered Drug Release System Based on Oneâ€Photon Upconversionâ€Like Photolysis. Advanced Healthcare Materials, 2020, 9, e2001118.	7.6	20

#	Article	IF	CITATIONS
55	A Simple Approach to Achieve Organic Radicals with Unusual Solid-State Emission and Persistent Stability. CCS Chemistry, 2022, 4, 1912-1920.	7.8	20
56	Materials with aggregation-induced emission characteristics for applications in diagnosis, theragnosis, disease mechanism study and personalized medicine. Materials Chemistry Frontiers, 2021, 5, 3322-3343.	5.9	20
57	Molecular Engineering of Laserâ€Induced Graphene for Potentialâ€Driven Broadâ€Spectrum Antimicrobial and Antiviral Applications. Small, 2021, 17, e2102841.	10.0	19
58	Optimising molecular rotors to AIE fluorophores for mitochondria uptake and retention. Chemical Communications, 2020, 56, 14853-14856.	4.1	18
59	Metallophilicity-Induced Clusterization: Single-Component White-Light Clusteroluminescence with Stimulus Response. CCS Chemistry, 2022, 4, 2570-2580.	7.8	17
60	Biochromic silole derivatives: a single dye for differentiation, quantitation and imaging of live/dead cells. Materials Horizons, 2018, 5, 969-978.	12.2	15
61	A near-infrared plasma membrane-specific AIE probe for fluorescence lifetime imaging of phagocytosis. Science China Chemistry, 2022, 65, 979-988.	8.2	15
62	Fabrication of hybridized nanoparticles with aggregation-induced emission characteristics and application for cell imaging. Journal of Materials Chemistry B, 2016, 4, 5265-5271.	5.8	14
63	Taming Reactive Oxygen Species: Mitochondria-Targeting Aggregation-Induced Emission Luminogen for Neuron Protection via Photosensitization-Triggered Autophagy. CCS Chemistry, 2022, 4, 2249-2257.	7.8	14
64	Simultaneous Photodynamic Eradication of Tooth Biofilm and Tooth Whitening with an Aggregationâ€Induced Emission Luminogen. Advanced Science, 2022, 9, e2106071.	11.2	14
65	Aggregation-Induced Emission and Biological Application of Tetraphenylethene Luminogens. Australian Journal of Chemistry, 2011, 64, 1203.	0.9	13
66	lmaging Macrophage Phagocytosis Using AIE Luminogen‣abeledE.â€coli. Chemistry - an Asian Journal, 2019, 14, 775-780.	3.3	13
67	Fluorescent Materials With Aggregation-Induced Emission Characteristics for Array-Based Sensing Assay. Frontiers in Chemistry, 2020, 8, 288.	3.6	13
68	Turning on Light Emission of a Dark Proâ€Aggregationâ€Induced Emission Luminogen in Aqueous Media Through Reductaseâ€Modulated Derotation. Advanced NanoBiomed Research, 2021, 1, 2000080.	3.6	12
69	Synthesis, properties, and applications of poly(ethylene glycol)-decorated tetraphenylethenes. Journal of Materials Chemistry C, 2014, 2, 6192-6198.	5.5	11
70	Ultrafast labeling and high-fidelity imaging of mitochondria in cancer cells using an aggregation-enhanced emission fluorescent probe. Chemical Communications, 2019, 55, 14681-14684.	4.1	11
71	Solutionâ€Controlled Conformational Switching of an Anchored Wireframe DNA Nanostructure. Small, 2019, 15, e1803628.	10.0	9
72	Fluorogenic Ag ⁺ –Tetrazolate Aggregation Enables Efficient Fluorescent Biological Silver Staining. Angewandte Chemie, 2018, 130, 5852-5855.	2.0	8

#	Article	IF	CITATIONS
73	An Aggregation-Induced Emission Optical Highlighter for the Studies of Endoplasmic Reticulum-Lipid Droplet Content Dynamics. CCS Chemistry, 2022, 4, 515-525.	7.8	7
74	Oxygen Quenching-Resistant Nanoaggregates with Aggregation-Induced Delayed Fluorescence for Time-Resolved Mapping of Intracellular Microviscosity. ACS Nano, 2022, 16, 6176-6184.	14.6	7
75	A switchable multimode microlaser based on an AIE microsphere. Journal of Materials Chemistry C, 2021, 9, 11180-11188.	5.5	6
76	Functionalization of Silk by AlEgens through Facile Bioconjugation: Fullâ€Color Fluorescence and Longâ€Term Bioimaging. Angewandte Chemie, 2021, 133, 12532-12538.	2.0	6
77	Patterned Honeycomb Structural Films with Fluorescent and Hydrophobic Properties. Journal of Nanomaterials, 2013, 2013, 1-8.	2.7	5
78	A Highly Efficient Aggregation-induced Emission Photosensitizer for Photodynamic Combat of Multidrug-resistant Bacteria. Chemical Research in Chinese Universities, 2021, 37, 150-156.	2.6	4
79	Multifunctional high-Z nanoradiosensitizers for multimodal synergistic cancer therapy. Journal of Materials Chemistry B, 2022, , .	5.8	4
80	Cancer cell-selective aggregation-induced emission probe for long-term plasma membrane imaging. Cell Reports Physical Science, 2022, 3, 100735.	5.6	4
81	Fluorescent Silver Staining of Proteins in Polyacrylamide Gels. Journal of Visualized Experiments, 2019, , .	0.3	2
82	A Smallâ€Molecule AIE Chromosome Periphery Probe for Cytogenetic Studies. Angewandte Chemie, 2020, 132, 10413-10417.	2.0	2
83	Photosensitizers: A Membraneâ€Targeting Photosensitizer with Aggregationâ€Induced Emission Characteristics for Highly Efficient Photodynamic Combat of Human Coronaviruses (Small 30/2021). Small, 2021, 17, 2170158.	10.0	1
84	Fabrication of Fluorescent Silica Nanoparticles with Aggregation-Induced Emission Luminogens for Cell Imaging. Methods in Molecular Biology, 2013, 991, 163-169.	0.9	0
85	Frontispiece: Fluorogenic Detection and Characterization of Proteins by Aggregationâ€Induced Emission Methods. Chemistry - A European Journal, 2019, 25, .	3.3	0
86	AlEgen-Based Fluorescent Nanoparticles for Long-Term Cell Tracing. , 2019, , 359-375.		0
87	Applications of AIEgens in Super-ResolutionÂlmaging, Fluorescence Lifetime Imaging, and Fluorescence Anisotropy Imaging. , 2019, , 409-423.		0
88	Fluorescent sensors based on aggregation-induced emission nanomaterials. , 2022, , 427-461.		0
89	AIE molecular probes for biomedical applications. , 2022, , 449-488.		0