
Pierre Roger René Marraccini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1262849/publications.pdf

Version: 2024-02-01

Pierre Roger René

#	Article	IF	CITATIONS
1	Genetics of coffee quality. Brazilian Journal of Plant Physiology, 2006, 18, 229-242.	0.5	131
2	Cytology, biochemistry and molecular changes during coffee fruit development. Brazilian Journal of Plant Physiology, 2006, 18, 175-199.	0.5	119
3	A conjugative plasmid vector for promoter analysis in several cyanobacteria of the genera Synechococcus and Synechocystis. Plant Molecular Biology, 1993, 23, 905-909.	3.9	95
4	Biochemical and genomic analysis of sucrose metabolism during coffee (Coffea arabica) fruit development. Journal of Experimental Botany, 2006, 57, 3243-3258.	4.8	95
5	Effects of shade on the development and sugar metabolism of coffee (Coffea arabica L.) fruits. Plant Physiology and Biochemistry, 2008, 46, 569-579.	5.8	89
6	Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora. Journal of Experimental Botany, 2012, 63, 4191-4212.	4.8	72
7	Evaluation of Kahweol and Cafestol in Coffee Tissues and Roasted Coffee by a New High-Performance Liquid Chromatography Methodology. Journal of Agricultural and Food Chemistry, 2010, 58, 88-93.	5.2	69
8	Biochemical and molecular characterization and expression of the 11S-type storage protein from Coffea arabica endosperm. Plant Physiology and Biochemistry, 1999, 37, 261-272.	5.8	68
9	Molecular and biochemical characterization of endo-l²-mannanases from germinating coffee (Coffea) Tj ETQq1	1 0.78431	4 rgBT /Overld
10	CRISPR/Cas9-mediated efficient targeted mutagenesis has the potential to accelerate the domestication of Coffea canephora. Plant Cell, Tissue and Organ Culture, 2018, 134, 383-394.	2.3	64
11	Construction and characterization of a Coffea canephora BAC library to study the organization of sucrose biosynthesis genes. Theoretical and Applied Genetics, 2005, 111, 1032-1041.	3.6	57
12	Transfer and replication of RSF1010-derived plasmids in several cyanobacteria of the generaSynechocystis andSynechococcus. Current Microbiology, 1993, 27, 323-327.	2.2	54
13	Biochemical and molecular characterization of α-d-galactosidase from coffee beans. Plant Physiology and Biochemistry, 2005, 43, 909-920.	5.8	49
14	Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different Coffea arabica cultivars. BMC Plant Biology, 2016, 16, 94.	3.6	48
15	Coffee Somatic Embryogenesis: How Did Research, Experience Gained and Innovations Promote the Commercial Propagation of Elite Clones From the Two Cultivated Species?. Frontiers in Plant Science, 2018, 9, 1630.	3.6	48
16	Molecular cloning of the complete 11S seed storage protein gene of Coffea arabica and promoter analysis in transgenic tobacco plants. Plant Physiology and Biochemistry, 1999, 37, 273-282.	5.8	46
17	RBCS1 expression in coffee: Coffea orthologs, Coffea arabica homeologs, and expression variability between genotypes and under drought stress. BMC Plant Biology, 2011, 11, 85.	3.6	39
18	Improving the quality of African robustas: QTLs for yield- and quality-related traits in Coffea canephora. Tree Genetics and Genomes, 2011, 7, 781-798.	1.6	34

Pierre Roger René

#	Article	IF	CITATIONS
19	Transcriptional Activity, Chromosomal Distribution and Expression Effects of Transposable Elements in Coffea Genomes. PLoS ONE, 2013, 8, e78931.	2.5	33
20	Identification and characterization of core abscisic acid (ABA) signaling components and their gene expression profile in response to abiotic stresses in Setaria viridis. Scientific Reports, 2019, 9, 4028.	3.3	30
21	Rubisco small subunit of Coffea arabica: cDNA sequence, gene cloning and promoter analysis in transgenic tobacco plants. Plant Physiology and Biochemistry, 2003, 41, 17-25.	5.8	28
22	Identification and characterization of Vietnamese coffee bacterial endophytes displaying in vitro antifungal and nematicidal activities. Microbiological Research, 2021, 242, 126613.	5.3	28
23	Shaded-Coffee: A Nature-Based Strategy for Coffee Production Under Climate Change? A Review. Frontiers in Sustainable Food Systems, 2022, 6, .	3.9	28
24	Differential fine-tuning of gene expression regulation in coffee leaves by CcDREB1D promoter haplotypes under water deficit. Journal of Experimental Botany, 2017, 68, 3017-3031.	4.8	26
25	Controlled irrigation and nitrogen, phosphorous and potassium fertilization affect the biochemical composition and quality of Arabica coffee beans. Journal of Agricultural Science, 2017, 155, 902-918.	1.3	25
26	Starmaya: The First Arabica F1 Coffee Hybrid Produced Using Genetic Male Sterility. Frontiers in Plant Science, 2019, 10, 1344.	3.6	23
27	Different Molecular Mechanisms Account for Drought Tolerance in Coffea canephora var. Conilon. Tropical Plant Biology, 2013, 6, 181-190.	1.9	22
28	Lipid transfer proteins in coffee: isolation of Coffea orthologs, Coffea arabica homeologs, expression during coffee fruit development and promoter analysis in transgenic tobacco plants. Plant Molecular Biology, 2014, 85, 11-31.	3.9	22
29	Coffee Microbiota and Its Potential Use in Sustainable Crop Management. A Review. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	21
30	Genetic diversity of native and cultivated Ugandan Robusta coffee (Coffea canephora Pierre ex A.) Tj ETQq0 0 0 e0245965.	rgBT /Ove 2.5	rlock 10 Tf 50 20
31	Light-regulated promoters fromSynechocystisPCC6803 share a consensus motif involved in photoregulation. Molecular Microbiology, 1994, 12, 1005-1012.	2.5	17
32	Shade effects on yield across different Coffea arabica cultivars — how much is too much? A meta-analysis. Agronomy for Sustainable Development, 2022, 42, .	5.3	15
33	Nucleotide Diversity of the Coding and Promoter Regions of DREB1D, a Candidate Gene for Drought Tolerance in Coffea Species. Tropical Plant Biology, 2018, 11, 31-48.	1.9	14
34	Functional analysis of different promoter haplotypes of the coffee (Coffea canephora) CcDREB1D gene through genetic transformation of Nicotiana tabacum. Plant Cell, Tissue and Organ Culture, 2018, 132, 279-294.	2.3	12
35	Expression of DREB-Like Genes in Coffea canephora and C. arabica Subjected to Various Types of Abiotic Stress. Tropical Plant Biology, 2019, 12, 98-116.	1.9	12
36	Characterization and Expression of Two cDNA Encoding 3-Hydroxy-3-methylglutaryl coenzyme A Reductase Isoforms in Coffee (<i>Coffea arabica</i> L.). OMICS A Journal of Integrative Biology, 2011, 15, 719-727.	2.0	11

Pierre Roger René

#	Article	IF	CITATIONS
37	Sucrose metabolism during fruit development in Coffea racemosa. Annals of Applied Biology, 2008, 152, 179-187.	2.5	10
38	The promoter of a cytosolic glutamine synthetase gene from the conifer Pinus sylvestris is active in cotyledons of germinating seeds and light-regulated in transgenic Arabidopsis thaliana. Physiologia Plantarum, 2001, 112, 388-396.	5.2	9
39	Flavor precursors and sensory attributes of coffee submitted to different post-harvest processing. AIMS Agriculture and Food, 2020, 5, 700-714.	1.6	8
40	Adaptive potential of <i>Coffea canephora</i> from Uganda in response to climate change. Molecular Ecology, 2022, 31, 1800-1819.	3.9	7
41	Molecular cloning of a full-length cDNA and gene from Coffea arabica encoding a protein homologous to the yeast translation initiation factor SUI1: expression analysis in plant organs. Brazilian Journal of Plant Physiology, 2003, 15, 55-58.	0.5	5
42	Using functional genomics approaches in identifying molecular determinants of coffee quality. A review. Cahiers Agricultures, 2012, 21, 125-133.	0.9	4
43	Healthy Tropical Plants to Mitigate the Impact of Climate Change—As Exemplified in Coffee. , 2016, , 83-95.		3
44	Gene Expression in Coffee. Progress in Botany Fortschritte Der Botanik, 2020, , 43-111.	0.3	3
45	Potential of the coffee endophytic <i>Bacillus cereus sensu lato</i> strain CCBLR15 to control the plant-parasitic nematode <i>Radopholus duriophilus</i> . Biocontrol Science and Technology, 2022, 32, 971-988.	1.3	3
46	Structural and functional characterization of the 5' upstream region of a glutamine synthetase gene from Scots pine. Annals of Forest Science, 2002, 59, 669-673.	2.0	1
47	Impactos de la sequÃa en el café: integrando procesos fisiológicos y morfológicos desde la hoja hasta la escala de toda la planta. , 0, , .		Ο