Willem DeGrip

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1262760/publications.pdf

Version: 2024-02-01

44069 74163 7,139 188 48 75 citations h-index g-index papers 191 191 191 5462 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Melanopsin (<i>Opn4</i>) Requirement for Normal Light-Induced Circadian Phase Shifting. Science, 2002, 298, 2213-2216.	12.6	768
2	Survival of red blood cells after transfusion: a comparison between red cells concentrates of different storage periods. Transfusion, 2008, 48, 1478-1485.	1.6	200
3	Monitoring of biomass composition from microbiological sources by means of FT″R spectroscopy. Biotechnology and Bioengineering, 2009, 103, 123-129.	3.3	147
4	Synthesis and properties of alkylglucosides with mild detergent action: improved synthesis and purification of \hat{l}^2 -1-octyl-, -nonyl-, and -decyl-glucose. Synthesis of \hat{l}^2 -1-undecylglucose and \hat{l}^2 -1-dodecylmaltose. Chemistry and Physics of Lipids, 1979, 23, 321-335.	3.2	139
5	Quantitative determination of retinals with complete retention of their geometric configuration. Lipids and Lipid Metabolism, 1980, 617, 430-438.	2.6	139
6	[38] Thermal stability of rhodopsin and opsin in some novel detergents. Methods in Enzymology, 1982, 81, 256-265.	1.0	136
7	X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6305-6310.	7.1	124
8	1H and 13C MAS NMR evidence for pronounced ligand-protein interactions involving the ionone ring of the retinylidene chromophore in rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9101-9106.	7.1	117
9	Short and mid-wavelength cone distribution in a nocturnal Strepsirrhine primate (Microcebus) Tj ETQq1 1 0.7843	14.rgBT /0	Overlock 10
10	Studies towards the crystallization of the rod visual pigment rhodopsin. Journal of Crystal Growth, 1992, 122, 375-384.	1.5	106
11	Enrichment of rhodopsin in rod outer segment membrane preparations. Vision Research, 1972, 12, 1697-1707.	1.4	104
12	Identification of vertebrate deep brain photoreceptors. Neuroscience and Biobehavioral Reviews, 1994, 18, 541-546.	6.1	104
13	Internalization and desensitization of adenosine receptors. Purinergic Signalling, 2008, 4, 21-37.	2.2	101
14	The proteome of red cell membranes and vesicles during storage in blood bank conditions. Transfusion, 2008, 48, 827-835.	1.6	99
15	Patterns of cell proliferation and cell death in the developing retina and optic tectum of the brown trout. Developmental Brain Research, 2005, 154, 101-119.	1.7	96
16	[36] Isolation and purification of bovine rhodopsin. Methods in Enzymology, 1980, 67, 301-320.	1.0	93
17	Fourier transform infrared difference spectroscopy of rhodopsin mutants: Light activation of rhodopsin causes hydrogen-bonding change in residue aspartic acid-83 during meta II formation. Biochemistry, 1993, 32, 10277-10282.	2.5	90
18	[30] Purification of bovine rhodopsin over concanavalin A-sepharose. Methods in Enzymology, 1982, 81, 197-207.	1.0	89

#	Article	IF	Citations
19	A possible role of rhodopsin in maintaining bilayer structure in the photoreceptor membrane. Biochimica Et Biophysica Acta - Biomembranes, 1979, 558, 330-337.	2.6	83
20	Light detection in a 'blind' mammal. Nature Neuroscience, 1998, 1, 655-656.	14.8	81
21	Erythrocyte membrane characteristics indicate abnormal cellular aging in patients with Alzheimer's disease. Neurobiology of Aging, 1991, 12, 13-18.	3.1	76
22	Solid State 15N NMR Evidence for a Complex Schiff Base Counterion in the Visual G-Protein-Coupled Receptor Rhodopsin. Biochemistry, 1999, 38, 7195-7199.	2.5	75
23	Biochemical aspects of the visual process XX. The molecular weight of rhodopsin. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1972, 271, 419-428.	1.7	73
24	PHOTOEXCITATION OF RHODOPSIN: CONFORMATION CHANGES IN THE CHROMOPHORE, PROTEIN AND ASSOCIATED LIPIDS AS DETERMINED BY FTIR DIFFERENCE SPECTROSCOPY. Photochemistry and Photobiology, 1988, 48, 497-504.	2.5	72
25	A new template for rhodopsin (vitamin A1 based) visual pigments. Vision Research, 1991, 31, 619-630.	1.4	72
26	Identification and distribution of photoreceptor subtypes in the neotenic tiger salamander retina. Visual Neuroscience, 1998, 15, 1175-1187.	1.0	72
27	High-resolution solid-state 13C-NMR study of carbons C-5 and C-12 of the chromophore of bovine rhodopsin. Evidence for a 6-S-cis conformation with negative-charge perturbation near C-12. FEBS Journal, 1987, 163, 9-14.	0.2	71
28	In vitro expression of bovine opsin using recombinant baculovirus: the role of glutamic acid (134) in opsin biosynthesis and glycosylation. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1089, 68-76.	2.4	68
29	Determination of a molecular torsional angle in the metarhodopsin-I photointermediate of rhodopsin by double-quantum solid-state NMR. Journal of Biomolecular NMR, 2000, 16, 1-8.	2.8	66
30	pH Dependence of Copper Geometry, Reduction Potential, and Nitrite Affinity in Nitrite Reductase. Journal of Biological Chemistry, 2007, 282, 6347-6355.	3.4	66
31	Reversible modulation of rhodopsin photolysis in pure phosphatidylserine membranes. Biochimica Et Biophysica Acta - Biomembranes, 1983, 734, 168-179.	2.6	65
32	10,20-Methanorhodopsins: (7E, 9E, 13E)-10, 20-methanorhodopsin and (7E, 9Z, 13Z)-10, 20-methanorhodopsin. 11-cis-Locked rhodopsin analog pigments with unusual thermal and photo-stability. FEBS Journal, 1990, 191, 211-220.	0.2	65
33	The proteome of red cell membranes and vesicles during storage in blood bank conditions. Transfusion, 2008, 48, 827-835.	1.6	64
34	Identification and characterization of syn- and anti-isomers of retinaloximes. Analytical Biochemistry, 1979, 99, 304-310.	2.4	63
35	An Additional Methyl Group at the 10-Position of Retinal Dramatically Slows down the Kinetics of the Rhodopsin Photocascadeâ€. Biochemistry, 1998, 37, 1411-1420.	2.5	62
36	Protein-Induced Bonding Perturbation of the Rhodopsin Chromophore Detected by Double-Quantum Solid-State NMR. Journal of the American Chemical Society, 2004, 126, 3948-3953.	13.7	58

#	Article	IF	CITATIONS
37	Biochemical aspects of the visual process. XXIII. Sulfhydryl groups and rhodopsin photolysis. Biochimica Et Biophysica Acta - Bioenergetics, 1973, 325, 315-322.	1.0	57
38	Development and degeneration of retina in rds mutant mice: Ultraimmunohistochemical localization of opsin. Experimental Eye Research, 1987, 44, 347-361.	2.6	57
39	Pigmented epithelium induces complete retinal reconstitution from dispersed embryonic chick retinae in reaggregation culture. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1293-1302.	2.6	57
40	Macroscopic Orientation of Natural and Model Membranes for Structural Studies. Analytical Biochemistry, 1997, 254, 132-138.	2.4	56
41	Early development of the retina and pineal complex in the sea lamprey: Comparative immunocytochemical study. Journal of Comparative Neurology, 2002, 442, 250-265.	1.6	56
42	Assembly of the Major Light-Harvesting Complex II in Lipid Nanodiscs. Biophysical Journal, 2011, 101, 2507-2515.	0.5	54
43	Degradation of rhodopsin by a lysosomal fraction of retinal pigment epithelium: Biochemical aspects of the visual process. XLI. Experimental Eye Research, 1980, 30, 183-191.	2.6	52
44	Carboxyl group involvement in the meta I and meta II stages in rhodopsin bleaching. A Fourier transform infrared spectroscopic study. Biochimica Et Biophysica Acta - Bioenergetics, 1985, 809, 97-106.	1.0	51
45	Histidine Tagging Both Allows Convenient Single-step Purification of Bovine Rhodopsin and Exerts Ionic Strength-dependent Effects on Its Photochemistry. Journal of Biological Chemistry, 1995, 270, 11222-11229.	3.4	51
46	Large-scale overproduction, functional purification and ligand affinities of the His-tagged human histamine H1 receptor. FEBS Journal, 2004, 271, 2636-2646.	0.2	51
47	Expression of the candidate circadian photopigment melanopsin (Opn4) in the mouse retinal pigment epithelium. Molecular Brain Research, 2004, 123, 132-135.	2.3	50
48	The Ring of the Rhodopsin Chromophore in a Hydrophobic Activation Switch Within the Binding Pocket. Journal of Molecular Biology, 2004, 343, 719-730.	4.2	50
49	Eye lens $\hat{l}\pm A$ - and $\hat{l}\pm B$ -crystallin: complex stability versus chaperone-like activity. BBA - Proteins and Proteomics, 1999, 1434, 114-123.	2.1	48
50	Ultra-High-Field MAS NMR Assay of a Multispin Labeled Ligand Bound to Its G-Protein Receptor Target in the Natural Membrane Environment: Electronic Structure of the Retinylidene Chromophore in Rhodopsinâ€. Biochemistry, 2001, 40, 3282-3288.	2.5	48
51	Magnetically controlled gravity for protein crystal growth. Applied Physics Letters, 2007, 90, .	3.3	47
52	Conformational Similarities in the \hat{I}^2 -lonone Ring Region of the Rhodopsin Chromophore in Its Ground State and after Photoactivation to the Metarhodopsin-I Intermediate. Biochemistry, 2003, 42, 13371-13378.	2.5	46
53	Retinal-Based Proton Pumping in the Near Infrared. Journal of the American Chemical Society, 2017, 139, 2338-2344.	13.7	45
54	Effect of carboxyl mutations on functional properties of bovine rhodopsin. Biophysical Chemistry, 1995, 56, 79-87.	2.8	44

#	Article	IF	CITATIONS
55	Double-Quantum 13C Nuclear Magnetic Resonance of Bathorhodopsin, the First Photointermediate in Mammalian Vision. Journal of the American Chemical Society, 2008, 130, 10490-10491.	13.7	44
56	Modulation of the Metarhodopsin I/Metarhodopsin II Equilibrium of Bovine Rhodopsin by Ionic Strength. Evidence for a Surface-Charge Effect. FEBS Journal, 1997, 243, 174-180.	0.2	42
57	Photoactivation of Rhodopsin Causes an Increased Hydrogen-Deuterium Exchange of Buried Peptide Groups. Biophysical Journal, 1998, 74, 192-198.	0.5	42
58	Large-scale purification of functional recombinant human aquaporin-2. FEBS Letters, 2001, 504, 200-205.	2.8	42
59	GPCR Proteomics: Mass Spectrometric and Functional Analysis of Histamine H $<$ sub $>$ 1 $<$ /sub $>$ Receptor after Baculovirus-Driven and $<$ i $>$ in Vitro $<$ /i $>$ Cell Free Expression. Journal of Proteome Research, 2008, 7, 621-629.	3.7	42
60	Tyrosine Structural Changes Detected during the Photoactivation of Rhodopsin. Journal of Biological Chemistry, 1998, 273, 23735-23739.	3.4	40
61	Large-scale production and purification of functional recombinant bovine rhodopsin with the use of the baculovirus expression system. Biochemical Journal, 1999, 342, 293-300.	3.7	40
62	Solid-State NMR Evidence for a Protonation Switch in the Binding Pocket of the H1 Receptor upon Binding of the Agonist Histamine. Journal of the American Chemical Society, 2007, 129, 867-872.	13.7	40
63	Use of a density modification technique for isolation of the plasma membrane of rod outer segments. Biochimica Et Biophysica Acta - Biomembranes, 1982, 687, 296-302.	2.6	39
64	Rhodopsin-induced experimental autoimmune uveoretinitis: Dose-dependent clinicopathological features. Experimental Eye Research, 1988, 47, 135-145.	2.6	39
65	A Fully Functional Rod Visual Pigment in a Blind Mammal. Journal of Biological Chemistry, 2000, 275, 38674-38679.	3.4	38
66	Accurate Measurements of 13 Câ^'13 CJ-Couplings in the Rhodopsin Chromophore by Double-Quantum Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2006, 128, 3878-3879.	13.7	38
67	The eye of the african mole-ratCryptomys anselli: to see or not to see?. European Journal of Neuroscience, 2003, 17, 709-720.	2.6	37
68	Eye development and retinal differentiation in an altricial fish species, the senegalese sole (<i>Solea) Tj ETQq0 0 Evolution, 2010, 314B, 580-605.</i>	0 rgBT /O ⁻ 1.3	verlock 10 Tf ! 37
69	Conformational activation of visual rhodopsin in native disc membranes. Science Signaling, 2015, 8, ra26.	3 . 6	37
70	Biochemical aspects of the visual process XXII. Amino group modification in bovine rod photoreceptor membranes. Biochimica Et Biophysica Acta - Biomembranes, 1973, 323, 125-142.	2.6	35
71	Uniform stable-isotope labeling in mammalian cells: formulation of a cost-effective culture medium. Applied Microbiology and Biotechnology, 2011, 89, 397-406.	3.6	35
72	Biochemical aspects of the visual process XXVIII. Classification of sulfhydryl groups in rhodopsin and other photoreceptor membrane proteins. Biochimica Et Biophysica Acta - Bioenergetics, 1975, 396, 104-115.	1.0	34

#	Article	IF	CITATIONS
73	Enzyme-linked immunosorbent assay for quantitative determination of the visual pigment rhodopsin in total-eye extracts. Experimental Eye Research, 1986, 43, 431-439.	2.6	34
74	Coexpression of three opsins in cone photoreceptors of the salamander <i>Ambystoma tigrinum</i> Journal of Comparative Neurology, 2014, 522, 2249-2265.	1.6	31
75	Development and degeneration of retina in rds mutant mice: immunoassay of the rod visual pigment rhodopsin. Biochimica Et Biophysica Acta - General Subjects, 1990, 1033, 103-109.	2.4	29
76	Deconvolution as a tool to remove fringes from an FT-IR spectrum. Vibrational Spectroscopy, 2004, 36, 89-95.	2.2	28
77	Functional expression of human cone pigments using recombinant baculovirus: compatibility with histidine tagging and evidence forN-glycosylation. FEBS Letters, 1996, 396, 26-30.	2.8	27
78	Selective Interface Detection:  Mapping Binding Site Contacts in Membrane Proteins by NMR Spectroscopy. Journal of the American Chemical Society, 2005, 127, 5734-5735.	13.7	27
79	Rhodopsin reconstitution in vesicles formed from simple, fully synthetic amphiphiles. Journal of the American Chemical Society, 1982, 104, 1069-1072.	13.7	26
80	Large-scale production and purification of the human green cone pigment: characterization of late photo-intermediates. Biochemical Journal, 1998, 330, 1201-1208.	3.7	26
81	A Comparative Study of Impurity Effects on Protein Crystallization: Diffusive versus Convective Crystal Growth. Crystal Growth and Design, 2015, 15, 1150-1159.	3.0	26
82	Modulation of spectral properties and pump activity of proteorhodopsins by retinal analogues. Biochemical Journal, 2015, 467, 333-343.	3.7	26
83	The binding site of retinaldehyde in cattle rhodopsin. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1973, 303, 189-193.	1.7	25
84	Chapter 6 Immunochemistry of rhodopsin. Progress in Retinal and Eye Research, 1985, 4, 137-180.	0.8	24
85	Immunoassay of rod visual pigment (opsin) in the eyes of rds mutant mice lacking receptor outer segments. Biochimica Et Biophysica Acta - General Subjects, 1985, 839, 122-126.	2.4	24
86	Asp83, Glu113and Glu134are not specifically involved in Schiff base protonation or wavelength regulation in bovine rhodopsin. FEBS Letters, 1990, 260, 113-118.	2.8	24
87	Erythrocyte membrane changes of individuals with Down's Syndrome in various stages of Alzheimer-type dementia. Neurobiology of Aging, 1993, 14, 223-228.	3.1	24
88	Cell differentiation in the retina of an epibenthonic teleost, the Tench (Tinca tinca, Linneo 1758). Experimental Eye Research, 2009, 89, 398-415.	2.6	24
89	Expression of the anion exchanger (AE) gene family in human brain. Identification of a new AE protein: AEO. Molecular Brain Research, 1994, 25, 97-104.	2.3	23
90	Pigmented Epithelium Sustains Cell Proliferation and Decreases Expression of Opsins and Acetylcholinesterase in Reaggregated Chicken Retinospheroids. European Journal of Neuroscience, 1997, 9, 1795-1803.	2.6	22

#	Article	IF	CITATIONS
91	Rapid transfer of overexpressed integral membrane protein from the host membrane into soluble lipid nanodiscs without previous purification. Biological Chemistry, 2015, 396, 903-915.	2.5	22
92	Strong pH-Dependent Near-Infrared Fluorescence in a Microbial Rhodopsin Reconstituted with a Red-Shifting Retinal Analogue. Journal of Physical Chemistry Letters, 2018, 9, 6469-6474.	4.6	22
93	[33] Sulfhydryl chemistry of rhodopsin. Methods in Enzymology, 1982, 81, 223-236.	1.0	21
94	Phase behavior of isolated photoreceptor membrane lipids is modulated by bivalent cations. FEBS Letters, 1984, 169, 256-260.	2.8	21
95	Solid-State NMR Analysis of Ligandâ^'Receptor Interactions Reveals an Induced Misfit in the Binding Site of Isorhodopsin. Biochemistry, 2004, 43, 16011-16018.	2.5	21
96	Biochemical aspects of the visual process. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1978, 537, 145-152.	1.7	20
97	Detergent-induced specificity of an antirhodopsin serum for opsin micro-complement fixation studies. BBA - Proteins and Proteomics, 1983, 742, 463-470.	2.1	20
98	Erythrocyte anion transporter and antibrain immunoreactivity in chorea-acanthocytosis. A contribution to etiology, genetics, and diagnosis. Brain Research Bulletin, 1994, 33, 523-528.	3.0	20
99	Probing Intramolecular Orientations in Rhodopsin and Metarhodopsin II by Polarized Infrared Difference Spectroscopyâ€. Biochemistry, 1999, 38, 13200-13209.	2.5	20
100	Fluoro Derivatives of Retinal Illuminate the Decisive Role of the C ₁₂ -H Element in Photoisomerization and Rhodopsin Activation. Journal of the American Chemical Society, 2009, 131, 17933-17942.	13.7	20
101	Allosteric modulators affect the internalization of human adenosine A1 receptors. European Journal of Pharmacology, 2005, 522, 1-8.	3.5	19
102	Methyl Substituents at the 11 or 12 Position of Retinal Profoundly and Differentially Affect Photochemistry and Signalling Activity of Rhodopsin. Journal of Molecular Biology, 2006, 363, 98-113.	4.2	19
103	Red cell concentrates of hemochromatosis patients comply with the storage guidelines for transfusion purposes. Transfusion, 2008, 48, 436-441.	1.6	19
104	High Resolution Protein Crystals Using an Efficient Convection-Free Geometry. Crystal Growth and Design, 2013, 13, 775-781.	3.0	19
105	Use of photoreceptor membrane suspensions for the study of rhodopsin and associated enzyme activities. Experimental Eye Research, 1974, 18, 77-88.	2.6	18
106	Large-scale production and purification of functional recombinant bovine rhodopsin with the use of the baculovirus expression system. Biochemical Journal, 1999, 342, 293.	3.7	18
107	Identification of circadian brain photoreceptors mediating photic entrainment of behavioural rhythms in lizards. European Journal of Neuroscience, 2003, 18, 364-372.	2.6	18
108	Differences in the pharmacological activation of visual opsins. Visual Neuroscience, 2006, 23, 899-908.	1.0	18

#	Article	IF	Citations
109	Expression of holo-proteorhodopsin in Synechocystis sp. PCC 6803. Metabolic Engineering, 2016, 35, 83-94.	7.0	18
110	Production of yeastolates for uniform stable isotope labelling in eukaryotic cell culture. Applied Microbiology and Biotechnology, 2009, 84, 575-581.	3.6	17
111	Comparison of the Structural Changes Occurring during the Primary Phototransition of Two Different Channelrhodopsins from <i>Chlamydomonas</i> Algae. Biochemistry, 2015, 54, 377-388.	2.5	17
112	Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Frontiers in Chemistry, 0, 10 , .	3.6	17
113	RECENT CHEMICAL STUDIES RELATED TO VISION. Photochemistry and Photobiology, 1988, 48, 799-810.	2.5	16
114	Are thrombocyte membranes altered in Alzheimer's disease? A morphometric and biochemical study. Neurobiology of Aging, 1992, 13, 711-716.	3.1	16
115	Functional Expression, Targeting and Ca ²⁺ Signaling of a Mouse Melanopsinâ€eYFP Fusion Protein in a Retinal Pigment Epithelium Cell Line ^{â€} . Photochemistry and Photobiology, 2008, 84, 990-995.	2.5	16
116	Light Penetration and Photoisomerization in Rhodopsin studied by Numerical Simulations and Double-Quantum Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2009, 131, 6133-6140.	13.7	16
117	Towards an interpretation of 13C chemical shifts in bathorhodopsin, a functional intermediate of a G-protein coupled receptor. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1350-1357.	2.6	16
118	Salamander Blueâ€sensitive Cones Lost During Metamorphosis ^{â€} . Photochemistry and Photobiology, 2008, 84, 855-862.	2.5	15
119	The pineal complex of Senegalese sole (Solea senegalensis): Anatomical, histological and immunohistochemical study. Aquaculture, 2008, 285, 207-215.	3.5	15
120	Light sensitivity in a vertebrate mechanoreceptor?. Journal of Experimental Biology, 2015, 218, 2826-9.	1.7	15
121	In Vitro Synthesis of Bovine Rhodopsin Using Recombinant Baculovirus. Methods in Neurosciences, 1993, 15, 307-321.	0.5	15
122	Co-localization of mesotocin and opsin immunoreactivity in the hypothalamic preoptic nucleus of Xenopus laevis. Brain Research, 2003, 969, 36-43.	2.2	14
123	7,8-Dihydro Retinals Outperform the Native Retinals in Conferring Photosensitivity to Visual Opsin. Journal of the American Chemical Society, 2007, 129, 13265-13269.	13.7	14
124	Combining retinal-based and chlorophyll-based (oxygenic) photosynthesis: Proteorhodopsin expression increases growth rate and fitness of a â^†PSI strain of Synechocystis sp. PCC6803. Metabolic Engineering, 2019, 52, 68-76.	7.0	14
125	Membrane matters: The impact of a nanodisc-bilayer or a detergent microenvironment on the properties of two eubacterial rhodopsins. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183113.	2.6	14
126	Involvement of Neuronal Anion Exchange Proteins in Cell Death in Alzheimer's Disease. Gerontology, 1997, 43, 67-78.	2.8	13

#	Article	IF	CITATIONS
127	Retinitis pigmentosa-associated rhodopsin mutations in three membrane-located cysteine residues present three different biochemical phenotypes. Biochemical and Biophysical Research Communications, 2002, 297, 847-853.	2.1	13
128	Structural Changes in an Anion Channelrhodopsin: Formation of the K and L Intermediates at 80 K. Biochemistry, 2017, 56, 2197-2208.	2.5	13
129	Redshifted and Nearâ€infrared Active Analog Pigments Based upon Archaerhodopsinâ€3. Photochemistry and Photobiology, 2019, 95, 959-968.	2.5	13
130	[2] Baculovirus expression system for expression and characterization of functional recombinant visual pigments. Methods in Enzymology, 2000, 315, 12-29.	1.0	12
131	A Structural Role for Asp83 in the Photoactivation of Rhodopsin. Biological Chemistry, 2001, 382, 1263-1270.	2.5	12
132	Expression of CNTF Receptor- \hat{l}_{\pm} in Chick Violet-Sensitive Cones with Unique Morphologic Properties. , 2004, 45, 655.		12
133	The area centralis in the chicken retina contains efferent target amacrine cells. Visual Neuroscience, 2009, 26, 249-254.	1.0	12
134	The development of the depletion zone during ceiling crystallization: phase shifting interferometry and simulation results. CrystEngComm, 2013, 15, 2275.	2.6	12
135	Cyclopropyl and Isopropyl Derivatives of 11-cisand 9-cisRetinals at C-9 and C-13: Subtle Steric Differences with Major Effects on Ligand Efficacy in Rhodopsin. Journal of Natural Products, 2011, 74, 383-390.	3.0	11
136	Heterologous expression of melanopsin: Present, problems and prospects. Progress in Retinal and Eye Research, 2016, 52, 1-21.	15.5	11
137	Functional Expression of Gloeobacter Rhodopsin in <i>Synechocystis</i> sp. PCC6803. Photochemistry and Photobiology, 2017, 93, 772-781.	2.5	11
138	Raman spectroscopy of a near infrared absorbing proteorhodopsin: Similarities to the bacteriorhodopsin O photointermediate. PLoS ONE, 2018, 13, e0209506.	2.5	11
139	Point mutations in bovine opsin can be classified in four groups with respect to their effect on the biosynthetic pathway of opsin. Biochemical Journal, 1996, 320, 807-815.	3.7	10
140	Opsin-like immunoreactivity in the circadian pacemaker neurons and photoreceptors of the eye of the opisthobranch mollusc Bulla gouldiana. Cell and Tissue Research, 1996, 287, 203-210.	2.9	10
141	A radioimmunoassay specific for opsin. BBA - Proteins and Proteomics, 1983, 742, 471-476.	2.1	9
142	A green cone-like pigment in the †blind†mole-rat Spalax ehrenbergi: functional expression and photochemical characterization. Photochemical and Photobiological Sciences, 2003, 2, 1287-1291.	2.9	9
143	Functional Expression of His-Tagged Rhodopsin in Sf9 Insect Cells. , 2003, 228, 73-86.		9
144	Constraints of the 9-Methyl Group Binding Pocket of the Rhodopsin Chromophore Probed by 9-Halogeno Substitution. Biochemistry, 2004, 43, 14802-14810.	2.5	9

#	Article	IF	Citations
145	Infrared analysis of peptide succinimide derivatives. International Journal of Peptide and Protein Research, 1993, 42, 570-577.	0.1	9
146	Stable isotope labelling of human histamine receptor H1R: Prospects for structure-based drug design. Doklady Biochemistry and Biophysics, 2010, 433, 164-167.	0.9	9
147	A large geometric distortion in the first photointermediate of rhodopsin, determined by double-quantum solid-state NMR. Journal of Biomolecular NMR, 2012, 53, 247-256.	2.8	9
148	Deletion of <i>sll1541</i> in Synechocystis sp. Strain PCC 6803 Allows Formation of a Far-Red-Shifted <i>holo</i> -Proteorhodopsin <i>In Vivo</i> . Applied and Environmental Microbiology, 2018, 84, .	3.1	9
149	Electronic Preresonance Stimulated Raman Scattering Imaging of Red-Shifted Proteorhodopsins: Toward Quantitation of the Membrane Potential. Journal of Physical Chemistry Letters, 2019, 10, 4374-4381.	4.6	9
150	Rod outer segment membranes: Good acceptors for retinoids?. Vision Research, 1984, 24, 1623-1627.	1.4	8
151	In vivo potentiation of cis-diamminedichloroplatinum (II) antitumor activity by pretreatment with sparsomycin. Cancer Letters, 1986, 32, 53-59.	7.2	8
152	Uptake and isomerization of all-trans retinol by isolated bovine retinal pigment epithelial cells: Further clues to the visual cycle. Experimental Eye Research, 1991, 52, 129-138.	2.6	8
153	Large scale expression and purification of mouse melanopsin-L in the baculovirus expression system. Protein Expression and Purification, 2013, 91, 134-146.	1.3	8
154	31P-NMR investigation of magnetically oriented rod outer segments. Spectral analysis and identification of individual phospholipids. FEBS Journal, 1986, 156, 383-390.	0.2	7
155	Anion exchange proteins and regulation of intracellular pH in cultured rat astrocytes and neurones. NeuroReport, 1997, 8, 427-430.	1.2	7
156	Alphaâ€retinals as Rhodopsin Chromophoresâ€"Preference for the 9â€∢i>Z Configuration and Partial Agonist Activity ^{â€} . Photochemistry and Photobiology, 2008, 84, 889-894.	2.5	7
157	A Quantumâ€mechanical Study of the Binding Pocket of Proteorhodopsin: Absorption and Vibrational Spectra Modulated by Analogue Chromophores. Photochemistry and Photobiology, 2017, 93, 1399-1406.	2.5	7
158	Functional Expression of Gloeobacter Rhodopsin in PSI-Less Synechocystis sp. PCC6803. Frontiers in Bioengineering and Biotechnology, 2019, 7, 67.	4.1	7
159	Biochemical aspects of the visual process. XXXI. Chemical modification studies on rod outer segment retinol dehydrogenase. Experimental Eye Research, 1975, 21, 549-555.	2.6	6
160	Interference of detergents in immunoassays of rhodopsin. Vision Research, 1982, 22, 1447-1449.	1.4	6
161	A single assay for multiple storageâ€sensitive red blood cell characteristics by means of infrared spectroscopy. Transfusion, 2010, 50, 366-375.	1.6	6
162	A practical kit for micro-scale application of the ceiling crystallisation method. CrystEngComm, 2015, 17, 2602-2605.	2.6	6

#	Article	IF	Citations
163	Coupled HOOP signature correlates with quantum yield of isorhodopsin and analog pigments. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 118-125.	1.0	6
164	Analog Retinal Redshifts Visible Absorption of QuasAr Transmembrane Voltage Sensors into Nearâ€infrared. Photochemistry and Photobiology, 2020, 96, 55-66.	2.5	6
165	The disk membrane as model for an excitable membrane. Neurochemistry International, 1980, 1, 539-550.	3.8	5
166	Illuminating protein crystal growth using fluorophore-labelled proteins. CrystEngComm, 2014, 16, 9800-9809.	2.6	5
167	Optical Switching Between Longâ€lived States of Opsin Transmembrane Voltage Sensors. Photochemistry and Photobiology, 2021, 97, 1001-1015.	2.5	5
168	Large-scale functional expression of visual pigments: towards high-resolution structural and mechanistic insight. Biochemical Society Transactions, 1999, 27, 937-944.	3.4	4
169	Insight into the chromophore of rhodopsin and its Meta-II photointermediate by ¹⁹ F solid-state NMR and chemical shift tensor calculations. Physical Chemistry Chemical Physics, 2018, 20, 30174-30188.	2.8	4
170	Photoreaction Dynamics of Red-Shifting Retinal Analogues Reconstituted in Proteorhodopsin. Journal of Physical Chemistry B, 2019, 123, 4242-4250.	2.6	4
171	Antitumour activity and retinotoxicity of ethyldeshydroxy-sparsomycin in mice. European Journal of Cancer, 1995, 31, 1526-1530.	2.8	3
172	Introduction of a rod pigment aromatic cluster does not improve the structural stability of the human green cone pigment. Journal of Structural Biology, 2007, 159, 222-227.	2.8	3
173	Photoactivation of Rhodopsin: Interplay between Protein and Chromophore. Novartis Foundation Symposium, 1999, 224, 102-123.	1.1	3
174	[43] Exchange of retinoids between lipid vesicles and rod outer segment membranes. Methods in Enzymology, 1990, 189, 402-411.	1.0	2
175	Erythrocyte Band 3-Like Protein Immunoreactivity in the Human Brain Cortex. Developmental Neuroscience, 1993, 15, 27-30.	2.0	2
176	Influence of aging and neurodegenerative disease on changes in band 3-like proteins in white blood cells. Mechanisms of Ageing and Development, 1995, 80, 43-52.	4.6	2
177	Erythrocyte aging in the demented elderly:. Mechanisms of Ageing and Development, 1998, 100, 53-58.	4.6	2
178	Pre-resonance stimulated Raman scattering spectroscopy and imaging of membrane potential using near-infrared rhodopsins. , 2019, , .		2
179	Isorhodopsin: An Undervalued Visual Pigment Analog. Colorants, 2022, 1, 256-279.	1.5	2
180	An enzyme-labeled immunoabsorbent assay (Elisa) for rhodopsinoids, comparison with radioimmunoassay. Vision Research, 1984, 24, 1693.	1.4	1

#	Article	IF	CITATIONS
181	A new isolation technique for retinal pigment epithelium. Vision Research, 1984, 24, 1693.	1.4	1
182	Embryonic nutritional hyperglycemia decreases cell proliferation in the zebrafish retina. Histochemistry and Cell Biology, 2022, 158, 401-409.	1.7	1
183	FTIR study of rhodopsin recombinants: Evidence for protein conformational changes. Vision Research, 1984, 24, 1694.	1.4	O
184	ANION EXCHANGE PROTEINS AND THE LIFE AND DEATH OF THE NEURON. Biochemical Society Transactions, 1996, 24, 596S-596S.	3.4	0
185	Expression and Spectroscopic Characterization of Melanopsin and Squid Rhodopsin. Biophysical Journal, 2011, 100, 420a.	0.5	0
186	Vibrational Studies of Channelrhodopsin-1 from Chlamydomonas Augustae: Protonation Changes during the Early Photocycle. Biophysical Journal, 2015, 108, 460a.	0.5	0
187	IR, Biological Applications. , 2017, , 469-478.		0
188	Erythrocyte Aging, Anion Exchange Proteins, and Alzheimer's Disease. , 1995, , 38-54.		0