
Mats Heyman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1262614/publications.pdf Version: 2024-02-01

Μάτς Ηγνμανι

#	Article	lF	CITATIONS
1	Remission, treatment failure, and relapse in pediatric ALL: an international consensus of the Ponte-di-Legno Consortium. Blood, 2022, 139, 1785-1793.	0.6	28
2	Asparaginase enzyme activity levels and toxicity in childhood acute lymphoblastic leukemia: a NOPHO ALL2008 study. Blood Advances, 2022, 6, 138-147.	2.5	11
3	A somatic <i>UBA2</i> variant preceded <i>ETV6-RUNX1</i> in the concordant BCP-ALL of monozygotic twins. Blood Advances, 2022, 6, 2275-2289.	2.5	5
4	Temporal changes in incidence of relapse and outcome after relapse of childhood acute lymphoblastic leukemia over three decades; a Nordic population-based cohort study. Leukemia, 2022, 36, 1274-1282.	3.3	1
5	Does minimal central nervous system involvement in childhood acute lymphoblastic leukemia increase the risk for central nervous system toxicity?. Pediatric Blood and Cancer, 2022, , e29745.	0.8	1
6	Relapse risk following truncation of pegylated asparaginase in childhood acute lymphoblastic leukemia. Blood, 2021, 137, 2373-2382.	0.6	42
7	Number of siblings and survival from childhood leukaemia: a national register-based cohort study from Sweden. British Journal of Cancer, 2021, 125, 112-118.	2.9	0
8	Skeletal adverse events in childhood cancer survivors: An Adult Life after Childhood Cancer in Scandinavia cohort study. International Journal of Cancer, 2021, 149, 1863-1876.	2.3	7
9	Mutational patterns and clonal evolution from diagnosis to relapse in pediatric acute lymphoblastic leukemia. Scientific Reports, 2021, 11, 15988.	1.6	6
10	Minimal residual disease, long-term outcome, and IKZF1 deletions in children and adolescents with Down syndrome and acute lymphocytic leukaemia: a matched cohort study. Lancet Haematology,the, 2021, 8, e700-e710.	2.2	10
11	Overexpression of chromatin remodeling and tyrosine kinase genes in iAMP21-positive acute lymphoblastic leukemia. Leukemia and Lymphoma, 2020, 61, 604-613.	0.6	7
12	A validated novel continuous prognostic index to deliver stratified medicine in pediatric acute lymphoblastic leukemia. Blood, 2020, 135, 1438-1446.	0.6	25
13	Seizures during treatment of childhood acute lymphoblastic leukemia: A population-based cohort study. European Journal of Paediatric Neurology, 2020, 27, 72-77.	0.7	16
14	<i>The Association between Asparaginase Enzyme Activity Levels and Toxicities in Childhood Acute Lymphoblastic Leukaemia in the NOPHO ALL2008 Protocol</i> . Blood, 2020, 136, 30-30.	0.6	0
15	Low burden of minimal residual disease prior to transplantation in children with very high risk acute lymphoblastic leukaemia: The <scp>NOPHO ALL</scp> 2008 experience. British Journal of Haematology, 2019, 184, 982-993.	1.2	15
16	Intermittent Versus Continuous PEG-Asparaginase to Reduce Asparaginase-Associated Toxicities: A NOPHO ALL2008 Randomized Study. Journal of Clinical Oncology, 2019, 37, 1638-1646.	0.8	72
17	Posterior reversible encephalopathy syndrome in children with acute lymphoblastic leukemia: Clinical characteristics, risk factors, course, and outcome of disease. Pediatric Blood and Cancer, 2019, 66, e27594.	0.8	41
18	Somatic Structural Alterations in Childhood Leukemia Can Be Backtracked in Neonatal Dried Blood Spots by Use of Whole-Genome Sequencing and Digital PCR. Clinical Chemistry, 2019, 65, 345-347.	1.5	2

MATS HEYMAN

#	Article	IF	CITATIONS
19	Genetic predisposition to <scp>PEG</scp> â€asparaginase hypersensitivity in children treated according to <scp>NOPHO ALL</scp> 2008. British Journal of Haematology, 2019, 184, 405-417.	1.2	33
20	Intensive Chemotherapy for High-Risk ALL in Children - the Nordic Collaborative Approach. Blood, 2019, 134, 742-742.	0.6	1
21	Posterior Reversible Encephalopathy Syndrome: Risk Factors and Impact on the Outcome in Children With Acute Lymphoblastic Leukemia Treated With Nordic Protocols. Journal of Pediatric Hematology/Oncology, 2018, 40, e13-e18.	0.3	20
22	Treatmentâ€related mortality in relapsed childhood acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2018, 65, e26909.	0.8	24
23	Survival After Childhood Cancer–Social Inequalities in High-Income Countries. Frontiers in Oncology, 2018, 8, 485.	1.3	27
24	Late mortality and morbidity among longâ€ŧerm leukemia survivors with Down syndrome: A nationwide populationâ€based cohort study. Pediatric Blood and Cancer, 2018, 65, e27249.	0.8	10
25	DNA methylation holds prognostic information in relapsed precursor B-cell acute lymphoblastic leukemia. Clinical Epigenetics, 2018, 10, 31.	1.8	17
26	Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies. Nature Medicine, 2017, 23, 256-263.	15.2	102
27	Presenting features and imaging in childhood acute myeloid leukemia with central nervous system involvement. Pediatric Blood and Cancer, 2017, 64, e26459.	0.8	11
28	Children with lowâ€risk acute lymphoblastic leukemia are at highest risk of second cancers. Pediatric Blood and Cancer, 2017, 64, e26518.	0.8	3
29	Hypertriglyceridemia during asparaginase treatment in children with acute lymphoblastic leukemia correlates with antithrombin activity in adolescents. Pediatric Blood and Cancer, 2017, 64, e26559.	0.8	15
30	Transcriptome sequencing in pediatric acute lymphoblastic leukemia identifies fusion genes associated with distinct DNA methylation profiles. Journal of Hematology and Oncology, 2017, 10, 148.	6.9	36
31	<i>Ex Vivo</i> Expanded Adaptive NK Cells Effectively Kill Primary Acute Lymphoblastic Leukemia Cells. Cancer Immunology Research, 2017, 5, 654-665.	1.6	71
32	The effect of central nervous system involvement and irradiation in childhood acute lymphoblastic leukemia: Lessons from the NOPHO ALL-92 and ALL-2000 protocols. Pediatric Blood and Cancer, 2017, 64, 242-249.	0.8	13
33	Role of neuroimaging in children with acute lymphoblastic leukemia and central nervous system involvement at diagnosis. Pediatric Blood and Cancer, 2017, 64, 64-70.	0.8	24
34	Toxicity profile and treatment delays in <scp>NOPHO ALL</scp> 2008—comparing adults and children with Philadelphia chromosomeâ€negative acute lymphoblastic leukemia. European Journal of Haematology, 2016, 96, 160-169.	1.1	57
35	Relapsed childhood acute lymphoblastic leukemia in the Nordic countries: prognostic factors, treatment and outcome. Haematologica, 2016, 101, 68-76.	1.7	122
36	Deep targeted sequencing in pediatric acute lymphoblastic leukemia unveils distinct mutational patterns between genetic subtypes and novel relapse-associated genes. Oncotarget, 2016, 7, 64071-64088.	0.8	36

MATS HEYMAN

#	Article	IF	CITATIONS
37	PAX5-ESRRB is a recurrent fusion gene in B-cell precursor pediatric acute lymphoblastic leukemia. Haematologica, 2016, 101, e20-e23.	1.7	9
38	The Heterogeneous Fusion Gene Landscape in Pediatric Acute Lymphoblastic Leukemia. Blood, 2016, 128, 4081-4081.	0.6	2
39	Complying with the European Clinical Trials directive while surviving the administrative pressure – An alternative approach to toxicity registration in a cancer trial. European Journal of Cancer, 2014, 50, 251-259.	1.3	72
40	A Retrospective Multicenter Study from the Nordic Society of Pediatric Hematology and Oncology (NOPHO) on Cerebral Sinus Venous Thromboses in Children with Acute Lymphoblastic Leukemia. Blood, 2014, 124, 584-584.	0.6	0
41	Novel Focal Gene Deletions in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia Detected By Array Comparative Genomic Hybridization. Blood, 2014, 124, 1085-1085.	0.6	0
42	DNA Methylation-Based Subtype Prediction for Pediatric Acute Lymphoblastic Leukemia (ALL). Blood, 2014, 124, 490-490.	0.6	0
43	Venous Thromboembolism in Children with Acute Lymphoblastic Leukemia in Northern Europe. Blood, 2014, 124, 3652-3652.	0.6	0
44	Risk of Thrombosis with Different Approaches to Central Venous Access During Acquired Asparaginase Related Antithrombin Deficiency in Children with Leukemia Blood, 2012, 120, 2241-2241.	0.6	0
45	Physicians Compliance During Maintenance Therapy in Children with Down Syndrome and Acute Lymphoblastic Leukemia Blood, 2012, 120, 2577-2577.	0.6	0
46	Inverse correlation between loss of heterozygosity of the short arm of chromosome 12 and p15 ink4B /p16 ink4 gene inactivation in childhood acute lymphoblastic leukaemia. British Journal of Haematology, 1997, 98, 147-150.	1.2	11
47	Inactivation of the p15INK4Band p16INK4Genes in Hematologic Malignancies. Leukemia and Lymphoma, 1996, 23, 235-245.	0.6	14
48	p16 ^{INK4} /p15 ^{INK4B} gene inactivation is a frequent event in malignant Tâ€cell lines. European Journal of Haematology, 1996, 56, 313-318.	1.1	23
49	Multiple genetic events involving rbi gene deletion and amplification of chromosome 21 in a case of acute lymphocytic leukemia. Genes Chromosomes and Cancer, 1994, 9, 72-75.	1.5	4
50	Chromosome 9 Short Arm Deletions in Malignant Diseases. Leukemia and Lymphoma, 1993, 11, 191-196.	0.6	9