
James M Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1262260/publications.pdf Version: 2024-02-01

IAMES M ROOWN

#	Article	IF	CITATIONS
1	High-throughput discovery of novel developmental phenotypes. Nature, 2016, 537, 508-514.	13.7	1,001
2	Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks. JAMA Ophthalmology, 2018, 136, 803.	1.4	442
3	Suitability of Endobronchial Ultrasound-guided Transbronchial Needle Aspiration Specimens for Subtyping and Genotyping of Non–Small Cell Lung Cancer. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 1316-1322.	2.5	227
4	Distributed deep learning networks among institutions for medical imaging. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 945-954.	2.2	227
5	Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nature Genetics, 2017, 49, 1231-1238.	9.4	216
6	Rapid Expansion of Human Epithelial Stem Cells Suitable for Airway Tissue Engineering. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 156-168.	2.5	169
7	Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement. Neuro-Oncology, 2019, 21, 1412-1422.	0.6	128
8	ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI. Frontiers in Neurology, 2018, 9, 679.	1.1	117
9	Combination of endobronchial ultrasoundâ€guided transbronchial needle aspiration with standard bronchoscopic techniques for the diagnosis of stage I and stage II pulmonary sarcoidosis. Respirology, 2011, 16, 467-472.	1.3	115
10	Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity. British Journal of Ophthalmology, 2019, 103, 580-584.	2.1	114
11	Stochastic homeostasis in human airway epithelium is achieved by neutral competition of basal cell progenitors. ELife, 2013, 2, e00966.	2.8	105
12	Monitoring Disease Progression With a Quantitative Severity Scale for Retinopathy of Prematurity Using Deep Learning. JAMA Ophthalmology, 2019, 137, 1022.	1.4	81
13	Siamese neural networks for continuous disease severity evaluation and change detection in medical imaging. Npj Digital Medicine, 2020, 3, 48.	5.7	70
14	A Quantitative Severity Scale for Retinopathy of Prematurity Using Deep Learning to Monitor Disease Regression After Treatment. JAMA Ophthalmology, 2019, 137, 1029.	1.4	63
15	The magnocellular visual system and schizophrenia: what can the color red tell us?. Schizophrenia Research, 2003, 63, 273-284.	1.1	56
16	Applications of Artificial Intelligence for Retinopathy of Prematurity Screening. Pediatrics, 2021, 147, e2020016618.	1.0	52
17	Machine Learning Models can Detect Aneurysm Rupture and Identify Clinical Features Associated with Rupture. World Neurosurgery, 2019, 131, e46-e51.	0.7	45
18	Automated Fundus Image Quality Assessment in Retinopathy of Prematurity Using Deep Convolutional Neural Networks. Ophthalmology Retina, 2019, 3, 444-450.	1.2	45

JAMES M BROWN

#	Article	IF	CITATIONS
19	Evaluation of a Deep Learning–Derived Quantitative Retinopathy of Prematurity Severity Scale. Ophthalmology, 2021, 128, 1070-1076.	2.5	40
20	Radiomics Repeatability Pitfalls in a Scan-Rescan MRI Study of Glioblastoma. Radiology: Artificial Intelligence, 2021, 3, e190199.	3.0	32
21	Plus Disease in Retinopathy of Prematurity: Convolutional Neural Network Performance Using a Combined Neural Network and Feature Extraction Approach. Translational Vision Science and Technology, 2020, 9, 10.	1.1	31
22	Evaluation of artificial intelligence-based telemedicine screening for retinopathy of prematurity. Journal of AAPOS, 2020, 24, 160-162.	0.2	31
23	SCHIZOPHRENIA AND RED LIGHT: fMRI EVIDENCE FOR A NOVEL BIOBEHAVIORAL MARKER. International Journal of Neuroscience, 2006, 116, 881-894.	0.8	28
24	A mouse informatics platform for phenotypic and translational discovery. Mammalian Genome, 2015, 26, 413-421.	1.0	27
25	Aggressive Posterior Retinopathy of Prematurity. Ophthalmology, 2020, 127, 1105-1112.	2.5	27
26	DeepNeuro: an open-source deep learning toolbox for neuroimaging. Neuroinformatics, 2021, 19, 127-140.	1.5	26
27	Federated Learning for Multicenter Collaboration in Ophthalmology. Ophthalmology Retina, 2022, 6, 657-663.	1.2	20
28	Classification and comparison via neural networks. Neural Networks, 2019, 118, 65-80.	3.3	18
29	Variability in Plus Disease Identified Using a Deep Learning-Based Retinopathy of Prematurity Severity Scale. Ophthalmology Retina, 2020, 4, 1016-1021.	1.2	18
30	Sequential neural networks for biologically informed glioma segmentation. , 2018, , .		18
31	Functional magnetic resonance imaging examination of the magnocellular visual pathway in nonpsychotic relatives of persons with schizophrenia. Schizophrenia Research, 2004, 71, 509-510.	1.1	16
32	Federated Learning for Multicenter Collaboration in Ophthalmology. Ophthalmology Retina, 2022, 6, 650-656.	1.2	15
33	When do you look where you look? A visual field asymmetry. Vision Research, 2014, 102, 33-40.	0.7	14
34	Fully automated disease severity assessment and treatment monitoring in retinopathy of prematurity using deep learning. , 2018, , .		14
35	The effect of a red background on location backward masking by structure. Perception & Psychophysics, 2008, 70, 503-507.	2.3	13
36	Detection and characterisation of bone destruction in murine rheumatoid arthritis using statistical shape models. Medical Image Analysis, 2017, 40, 30-43.	7.0	13

JAMES M BROWN

#	Article	IF	CITATIONS
37	The path of visual attention. Acta Psychologica, 2006, 121, 199-209.	0.7	12
38	A bioimage informatics platform for high-throughput embryo phenotyping. Briefings in Bioinformatics, 2018, 19, bbw101.	3.2	9
39	Deep Learning for Image Quality Assessment of Fundus Images in Retinopathy of Prematurity. AMIA Annual Symposium proceedings, 2018, 2018, 1224-1232.	0.2	9
40	LAMA: automated image analysis for the developmental phenotyping of mouse embryos. Development (Cambridge), 2021, 148, .	1.2	7
41	Effects of Endogenous Spatial Attention on the Detection and Discrimination of Spatial Frequencies. Perception, 2006, 35, 193-200.	0.5	6
42	Deep learning for computer-aided diagnosis in ophthalmology: a review. , 2021, , 219-237.		3
43	Magnocellular and Parvocellular Pathway Influences on Location-Based Inhibition-Of-Return. Perception, 2012, 41, 319-338.	0.5	2
44	Comparative visualization of genotype-phenotype relationships. Nature Methods, 2015, 12, 698-699.	9.0	2
45	Improved interpretability for computer-aided severity assessment of retinopathy of prematurity. , 2019, , .		2
46	Does insulin therapy lead to an increased risk of cancer in type 2 diabetes mellitus?. Practical Diabetes International: the International Journal for Diabetes Care Teams Worldwide, 2005, 22, 77-78.	0.2	1
47	NCOG-04. EFFECTS OF PROTON RADIATION ON BRAIN STRUCTURE AND FUNCTION IN LOW GRADE GLIOMA. Neuro-Oncology, 2018, 20, vi173-vi173.	0.6	1
48	Where did I come from? Where am I going? Functional influences on visual search fixation duration. Journal of Eye Movement Research, 2017, 10, .	0.5	1
49	Anatomical DCE-MRI phantoms generated from glioma patient data. , 2018, , .		1
50	The object advantage can be eliminated under equiluminant conditions. Psychonomic Bulletin and Review, 2014, 21, 1459-1464.	1.4	0
51	NIMG-68. MRI CHANGES IN NEWLY DIAGNOSED GLIOBLASTOMA PATIENTS TREATED AS PART OF A PHASE II TRIAL WITH BAVITUXIMAB, RADIATION, AND TEMOZOLOMIDE. Neuro-Oncology, 2018, 20, vi191-vi191.	0.6	0
52	Proximity Sensing Using IEEE 802.15.4 Radios. Lecture Notes in Computer Science, 2006, , 248-249.	1.0	0
53	3D Articulated Registration of the Mouse Hind Limb for Bone Morphometric Analysis in Rheumatoid Arthritis. Lecture Notes in Computer Science, 2014, , 41-50.	1.0	0
54	NIMG-05. ADVANCED IMAGING TO ASSESS LONGITUDINAL VASCULAR CHANGES IN BRAIN METASTASES TREATED WITH CHECKPOINT INHIBITION. Neuro-Oncology, 2020, 22, ii147-ii147.	0.6	0