
Piotr Rytlewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1261970/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyhydroxyalkanoates production from short and medium chain carboxylic acids by Paracoccus homiensis. Scientific Reports, 2022, 12, 7263.	1.6	8
2	Riboflavin as a Biodegradable Functional Additive for Thermoplastic Polymers. Environments - MDPI, 2022, 9, 56.	1.5	4
3	Comparative Evaluation of Cu(acac)2 and {[Cu(μ-O,O′-NO3) (L-arg) (2,2′-bpy)]·NO3}n as Potential Precursors of Electroless Metallization of Laser-Activated Polymer Materials. Materials, 2021, 14, 978.	1.3	1
4	A review on the direct electroplating of polymeric materials. Journal of Materials Science, 2021, 56, 14881-14899.	1.7	26
5	Evaluation of the Mechanical and Biocidal Properties of Lapacho from Tabebuia Plant as a Biocomposite Material. Materials, 2021, 14, 4241.	1.3	4
6	Laser Activated and Electroless Metalized Polyurethane Coatings Containing Copper(II) L-Tyrosine and Glass Microspheres. Molecules, 2021, 26, 5571.	1.7	2
7	Recyclability of new polylactide based biodegradable materials with plant extracts containing natural polyphenols. Sustainable Materials and Technologies, 2021, 30, e00351.	1.7	2
8	Laser-induced surface activation and electroless metallization of polyurethane coating containing copper(II) L-tyrosine. Applied Surface Science, 2020, 505, 144429.	3.1	12
9	TG-FTIR coupled analysis to predetermine effective precursors for laser-activated and electroless metallized materials. Journal of Thermal Analysis and Calorimetry, 2020, 141, 697-705.	2.0	3
10	Crystal and molecular structure stabilized by weak interaction in unique 3,5-diiodo-L-tyrosinato copper(II) complex – synthesis, experimental and theoretical studies. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 262, 114723.	1.7	2
11	Plant extracts as natural additives for environmentally friendly polylactide films. Food Packaging and Shelf Life, 2020, 26, 100593.	3.3	15
12	Copper Filled Poly(Acrylonitrile-co-Butadiene-co-Styrene) Composites for Laser-Assisted Selective Metallization. Materials, 2020, 13, 2224.	1.3	5
13	Impact of Accelerated Aging on the Performance Characteristics of "Green" Packaging Material of Polylactide. Advances in Science and Technology Research Journal, 2020, 14, 1-10.	0.4	1
14	Composting of Polylactide Containing Natural Anti-Aging Compounds of Plant Origin. Polymers, 2019, 11, 1582.	2.0	10
15	The Effect of Accelerated Aging on Polylactide Containing Plant Extracts. Polymers, 2019, 11, 575.	2.0	33
16	Copper(II) complex with L-arginine – Crystal structure, DFT calculations, spectroscopic, thermal and magnetic properties. Materials Chemistry and Physics, 2019, 228, 272-284.	2.0	17
17	Flax fibers reinforced polycaprolactone modified by triallyl isocyanurate and electron radiation. Polymer Composites, 2019, 40, 481-488.	2.3	4
18	Flax fibres reinforced polylactide modified by ionizing radiation. Industrial Crops and Products, 2018, 112, 716-723.	2.5	21

PIOTR RYTLEWSKI

#	Article	IF	CITATIONS
19	Enzymatic degradation of flax-fibers reinforced polylactide. International Biodeterioration and Biodegradation, 2018, 126, 160-166.	1.9	40
20	Mechanical properties and biodegradability of flax fiber-reinforced composite of polylactide and polycaprolactone. Polimery, 2018, 63, 603-610.	0.4	17
21	Application of thermogravimetry in the assessment of coatings ability to be metallized. Journal of Thermal Analysis and Calorimetry, 2017, 127, 381-387.	2.0	7
22	Laser-induced surface activation of biocomposites for electroless metallization. Surface and Coatings Technology, 2017, 311, 104-112.	2.2	14
23	Electroless metallization of plastics. Polimery, 2017, 62, 163-169.	0.4	2
24	Autocatalytic electroless copper plating of polymeric materials. Polimery, 2017, 62, 371-379.	0.4	1
25	Stability studies of plasma modification effects of polylactide and polycaprolactone surface layers. Applied Surface Science, 2016, 377, 228-237.	3.1	31
26	Influence of Specific Processing Conditions and Aliphatic-Aromatic Copolyester on Polylactide Properties. Chemical Engineering Communications, 2016, 203, 1540-1546.	1.5	3
27	Electrostatic separation of binary mixtures of some biodegradable polymers and poly(vinyl chloride) or poly(ethylene terephthalate). Polimery, 2016, 61, 835-843.	0.4	7
28	Laser-assisted Electroless Metallization of Polymer Materials: A Critical Review. Reviews of Adhesion and Adhesives, 2016, 4, 334-366.	3.3	9
29	Influence of DC plasma modification on the selected properties and the geometrical surface structure of polylactide prior to autocatalytic metallization. Materials Chemistry and Physics, 2015, 153, 135-144.	2.0	12
30	Influence of glass microspheres on selected properties of polylactide composites. Composites Part B: Engineering, 2015, 76, 13-19.	5.9	25
31	Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods. Applied Surface Science, 2015, 346, 11-17.	3.1	39
32	Studies on functional properties of PCL films modified by electron radiation and TAIC additive. Polymer Testing, 2015, 48, 169-174.	2.3	15
33	Characteristic and applications of single polymer composites. Polimery, 2015, 60, 3-11.	0.4	1
34	Autocatalytic metallization of polylactide. Polimery, 2015, 60, 492-500.	0.4	6
35	Laser-assisted metallization of composite coatings containing copper(II) acetylacetonate and copper(II) oxide or copper(II) hydroxide. Surface and Coatings Technology, 2014, 259, 660-666.	2.2	22
36	Application of Nd:YAG Laser in Electroless Metallization of Polymer Composites. Materials and Manufacturing Processes, 2014, 29, 1111-1116.	2.7	10

PIOTR RYTLEWSKI

#	Article	IF	CITATIONS
37	Assessment of dicumyl peroxide ability to improve adhesion between polylactide and flax or hemp fibres. Composite Interfaces, 2014, 21, 671-683.	1.3	21
38	Effects of coffee on the stability of accelerated aged poly(acrylonitryleâ€butadieneâ€styrene). Journal of Applied Polymer Science, 2014, 131, .	1.3	10
39	Single polymer composites manufacturing methods. Polimery, 2014, 59, 769-775.	0.4	1
40	Influence of glass fibre content on catalytic and adhesion properties of laser irradiated polyamide composites. Surface Engineering, 2013, 29, 713-719.	1.1	9
41	Laser induced electroactivity of polyamide composites. Electrochimica Acta, 2012, 61, 191-197.	2.6	21
42	Some composting and biodegradation effects of physically or chemically crosslinked poly(lactic acid). Polymer Testing, 2012, 31, 83-92.	2.3	34
43	Laser induced surface modification of polylactide. Journal of Materials Processing Technology, 2012, 212, 1700-1704.	3.1	50
44	Surface morphology studies of laser irradiated and chemically metalized polyamide composites. Surface and Coatings Technology, 2011, 205, 5248-5253.	2.2	23
45	Comparative analysis of shungite and graphite effects on some properties of polylactide composites. Polymer Testing, 2011, 30, 429-435.	2.3	10
46	Influence of some crosslinking agents on thermal and mechanical properties of electron beam irradiated polylactide. Radiation Physics and Chemistry, 2010, 79, 1052-1057.	1.4	57
47	Effects of Laser Irradiation on Surface Properties of Poly(ethylene terephthalate). Journal of Adhesion Science and Technology, 2010, 24, 685-697.	1.4	4
48	Some Effects of Corona Plasma Treatment of Polylactide/Montmorillonite Nanocomposite Films. Plasma Processes and Polymers, 2009, 6, S387.	1.6	14
49	Characterisation of multi-extruded poly(lactic acid). Polymer Testing, 2009, 28, 412-418.	2.3	176
50	Laser-induced surface modification of polystyrene. Applied Surface Science, 2009, 256, 857-861.	3.1	36
51	Laser modification of polymeric materials. Part II. Chemical reactions induced by laser beam. Polimery, 2007, 52, 403-410.	0.4	4
52	Laser modification of polymeric materials. Part III. Laser ablation and changes of geometric structure of the surface. Polimery, 2007, 52, 634-639.	0.4	5