Leaf Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1261467/publications.pdf

Version: 2024-02-01

267 papers 28,652 citations

93 h-index 161 g-index

281 all docs

281 docs citations

times ranked

281

26196 citing authors

#	Article	IF	CITATIONS
1	Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Letters, 1990, 268, 235-237.	2.8	1,819
2	Pharmacokinetics and Biodistribution of Nanoparticles. Molecular Pharmaceutics, 2008, 5, 496-504.	4.6	1,313
3	The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1235, 289-295.	2.6	714
4	Recent Advances in Nonviral Vectors for Gene Delivery. Accounts of Chemical Research, 2012, 45, 971-979.	15.6	542
5	In vivo delivery of miRNAs for cancer therapy: Challenges and strategies. Advanced Drug Delivery Reviews, 2015, 81, 128-141.	13.7	533
6	Nanoparticles Modified With Tumor-targeting scFv Deliver siRNA and miRNA for Cancer Therapy. Molecular Therapy, 2010, 18, 1650-1656.	8.2	488
7	Potentiation of Cationic Liposome-Mediated Gene Delivery by Polycations. Biochemistry, 1996, 35, 1027-1036.	2.5	486
8	Stealth nanoparticles: High density but sheddable PEG is a key for tumor targeting. Journal of Controlled Release, 2010, 145, 178-181.	9.9	475
9	mRNA vaccine for cancer immunotherapy. Molecular Cancer, 2021, 20, 41.	19.2	445
10	Lipid-based systemic delivery of siRNA. Advanced Drug Delivery Reviews, 2009, 61, 721-731.	13.7	424
11	Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. Journal of Controlled Release, 2010, 142, 416-421.	9.9	423
12	Nanoparticles evading the reticuloendothelial system: Role of the supported bilayer. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2259-2266.	2.6	396
13	Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1104, 95-101.	2.6	391
14	Folate-targeted, Anionic Liposome-entrapped Polylysine-condensed DNA for Tumor Cell-specific Gene Transfer. Journal of Biological Chemistry, 1996, 271, 8481-8487.	3.4	376
15	Influence of the steric barrier activity of amphipathic poly(ethyleneglycol) and ganglioside GM1 on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS Letters, 1991, 284, 263-266.	2.8	351
16	Self-Assembled Redox Dual-Responsive Prodrug-Nanosystem Formed by Single Thioether-Bridged Paclitaxel-Fatty Acid Conjugate for Cancer Chemotherapy. Nano Letters, 2016, 16, 5401-5408.	9.1	346
17	Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nature Communications, 2018, 9, 2237.	12.8	329
18	In Vivo Gene Delivery by Nonviral Vectors: Overcoming Hurdles?. Molecular Therapy, 2012, 20, 1298-1304.	8.2	314

#	Article	IF	Citations
19	Tumor-targeted Delivery of siRNA by Self-assembled Nanoparticles. Molecular Therapy, 2008, 16, 163-169.	8.2	303
20	A melanin-mediated cancer immunotherapy patch. Science Immunology, 2017, 2, .	11.9	300
21	Development of non-viral vectors for systemic gene delivery. Journal of Controlled Release, 2002, 78, 259-266.	9.9	280
22	Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor. Journal of Controlled Release, 2012, 158, 108-114.	9.9	279
23	Exosomes from M1-Polarized Macrophages Potentiate the Cancer Vaccine by Creating a Pro-inflammatory Microenvironment in the Lymph Node. Molecular Therapy, 2017, 25, 1665-1675.	8.2	265
24	Targeted Delivery of Antisense Oligodeoxynucleotide and Small Interference RNA into Lung Cancer Cells. Molecular Pharmaceutics, 2006, 3, 579-588.	4.6	261
25	Design considerations for liposomal vaccines: Influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens. Vaccine, 2012, 30, 2256-2272.	3.8	260
26	Nanoparticle-Delivered Transforming Growth Factor- \hat{l}^2 siRNA Enhances Vaccination against Advanced Melanoma by Modifying Tumor Microenvironment. ACS Nano, 2014, 8, 3636-3645.	14.6	253
27	Nanostructured calcium phosphates (NanoCaPs) for non-viral gene delivery: Influence of the synthesis parameters on transfection efficiency. Biomaterials, 2007, 28, 1267-1279.	11.4	247
28	Anisamide-targeted stealth liposomes: A potent carrier for targeting doxorubicin to human prostate cancer cells. International Journal of Cancer, 2004, 112, 693-700.	5.1	244
29	Combination Immunotherapy of MUC1 mRNA Nano-vaccine and CTLA-4 Blockade Effectively Inhibits Growth of Triple Negative Breast Cancer. Molecular Therapy, 2018, 26, 45-55.	8.2	240
30	Advances in Anti-Tumor Treatments Targeting the CD47/SIRPα Axis. Frontiers in Immunology, 2020, 11, 18.	4.8	235
31	The Inhibitory Role of CpG Immunostimulatory Motifs in Cationic Lipid Vector-Mediated Transgene Expression in Vivo. Human Gene Therapy, 1999, 10, 2153-2161.	2.7	232
32	Nanomaterials for cancer immunotherapy. Biomaterials, 2017, 148, 16-30.	11.4	226
33	Quercetin Remodels the Tumor Microenvironment To Improve the Permeation, Retention, and Antitumor Effects of Nanoparticles. ACS Nano, 2017, 11, 4916-4925.	14.6	218
34	Effect of cationic cholesterol derivatives on gene transfer and protein kinase C activity. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1111, 239-246.	2.6	217
35	An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. Journal of Controlled Release, 2008, 131, 64-69.	9.9	217
36	Nonviral Methods for siRNA Delivery. Molecular Pharmaceutics, 2009, 6, 651-658.	4.6	215

#	Article	IF	CITATIONS
37	Icaritin Exacerbates Mitophagy and Synergizes with Doxorubicin to Induce Immunogenic Cell Death in Hepatocellular Carcinoma. ACS Nano, 2020, 14, 4816-4828.	14.6	205
38	Multifunctional nanoparticles co-delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T-lymphocyte response against melanoma and its lung metastasis. Journal of Controlled Release, 2013, 172, 259-265.	9.9	199
39	Multifunctional Nanoparticles Delivering Small Interfering RNA and Doxorubicin Overcome Drug Resistance in Cancer. Journal of Biological Chemistry, 2010, 285, 22639-22650.	3.4	194
40	Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors. Journal of Controlled Release, 2015, 219, 192-204.	9.9	192
41	Esteraseâ€Activated Chargeâ€Reversal Polymer for Fibroblastâ€Exempt Cancer Gene Therapy. Advanced Materials, 2016, 28, 10613-10622.	21.0	189
42	Efficient Oncogene Silencing and Metastasis Inhibition via Systemic Delivery of siRNA. Molecular Therapy, 2008, 16, 942-946.	8.2	183
43	Nanoparticle-Mediated Remodeling of the Tumor Microenvironment to Enhance Immunotherapy. ACS Nano, 2018, 12, 11740-11755.	14.6	176
44	Nanoparticles Targeted With NGR Motif Deliver c-myc siRNA and Doxorubicin for Anticancer Therapy. Molecular Therapy, 2010, 18, 828-834.	8.2	169
45	Targeting Tumor-Associated Fibroblasts for Therapeutic Delivery in Desmoplastic Tumors. Cancer Research, 2017, 77, 719-731.	0.9	169
46	Intravenous Delivery of siRNA Targeting CD47 Effectively Inhibits Melanoma Tumor Growth and Lung Metastasis. Molecular Therapy, 2013, 21, 1919-1929.	8.2	165
47	Systemic Delivery of Modified mRNA Encoding Herpes Simplex Virus 1 Thymidine Kinase for Targeted Cancer Gene Therapy. Molecular Therapy, 2013, 21, 358-367.	8.2	164
48	Co-delivery of Cisplatin and Rapamycin for Enhanced Anticancer Therapy through Synergistic Effects and Microenvironment Modulation. ACS Nano, 2014, 8, 4996-5009.	14.6	163
49	The Binding Site Barrier Elicited by Tumor-Associated Fibroblasts Interferes Disposition of Nanoparticles in Stroma-Vessel Type Tumors. ACS Nano, 2016, 10, 9243-9258.	14.6	161
50	Mechanism of adjuvant activity of cationic liposome: Phosphorylation of a MAP kinase, ERK and induction of chemokines. Molecular Immunology, 2007, 44, 3672-3681.	2.2	159
51	Nanocarrier-Mediated Chemo-Immunotherapy Arrested Cancer Progression and Induced Tumor Dormancy in Desmoplastic Melanoma. ACS Nano, 2018, 12, 7812-7825.	14.6	159
52	Delivery of oligonucleotides with lipid nanoparticles. Advanced Drug Delivery Reviews, 2015, 87, 68-80.	13.7	158
53	In Vivo Delivery of RNAi with Lipid-Based Nanoparticles. Annual Review of Biomedical Engineering, 2011, 13, 507-530.	12.3	156
54	Immunostimulation of dendritic cells by cationic liposomes. Molecular Membrane Biology, 2006, 23, 385-395.	2.0	155

#	Article	IF	CITATIONS
55	The Suppressive Tumor Microenvironment: A Challenge in Cancer Immunotherapy. Molecular Pharmaceutics, 2011, 8, 635-641.	4.6	155
56	Nanoparticles with Precise Ratiometric Coâ€Loading and Coâ€Delivery of Gemcitabine Monophosphate and Cisplatin for Treatment of Bladder Cancer. Advanced Functional Materials, 2014, 24, 6601-6611.	14.9	154
57	Nanotechnology intervention of the microbiome for cancer therapy. Nature Nanotechnology, 2019, 14, 1093-1103.	31.5	151
58	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	31.5	149
59	Facile Fabrication of Tumor Redoxâ€Sensitive Nanoassemblies of Smallâ€Molecule Oleate Prodrug as Potent Chemotherapeutic Nanomedicine. Small, 2016, 12, 6353-6362.	10.0	147
60	Nanoformulations for combination or cascade anticancer therapy. Advanced Drug Delivery Reviews, 2017, 115, 3-22.	13.7	145
61	Nano Codelivery of Oxaliplatin and Folinic Acid Achieves Synergistic Chemo-Immunotherapy with 5-Fluorouracil for Colorectal Cancer and Liver Metastasis. ACS Nano, 2020, 14, 5075-5089.	14.6	144
62	Efficient gene silencing in metastatic tumor by siRNA formulated in surface-modified nanoparticles. Journal of Controlled Release, 2008, 126, 77-84.	9.9	141
63	Hepatoma-intrinsic CCRK inhibition diminishes myeloid-derived suppressor cell immunosuppression and enhances immune-checkpoint blockade efficacy. Gut, 2018, 67, 931-944.	12.1	138
64	PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery. Nature Communications, 2016, 7, 11822.	12.8	133
65	mRNA Vaccine with Antigen-Specific Checkpoint Blockade Induces an Enhanced Immune Response against Established Melanoma. Molecular Therapy, 2018, 26, 420-434.	8.2	132
66	Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications. Chemical Society Reviews, 2019, 48, 2698-2737.	38.1	131
67	Nanoparticles Escaping RES and Endosome: Challenges for siRNA Delivery for Cancer Therapy. Journal of Nanomaterials, 2011, 2011, 1-12.	2.7	129
68	Nanoparticles containing insoluble drug for cancer therapy. Biotechnology Advances, 2014, 32, 778-788.	11.7	127
69	Lipid-Coated Cisplatin Nanoparticles Induce Neighboring Effect and Exhibit Enhanced Anticancer Efficacy. ACS Nano, 2013, 7, 9896-9904.	14.6	125
70	Trapping of Lipopolysaccharide to Promote Immunotherapy against Colorectal Cancer and Attenuate Liver Metastasis. Advanced Materials, 2018, 30, e1805007.	21.0	125
71	Tumor-targeted delivery of sunitinib base enhances vaccine therapy for advanced melanoma by remodeling the tumor microenvironment. Journal of Controlled Release, 2017, 245, 81-94.	9.9	122
72	Anti-tumor activity of splice-switching oligonucleotides. Nucleic Acids Research, 2010, 38, 8348-8356.	14.5	121

#	Article	IF	Citations
73	Lipid Nanoparticles for Gene Delivery. Advances in Genetics, 2014, 88, 13-36.	1.8	118
74	The targeted intracellular delivery of cytochromeÂC protein to tumors using lipid-apolipoprotein nanoparticles. Biomaterials, 2012, 33, 3959-3966.	11.4	117
75	Systemic Delivery of siRNA via LCP Nanoparticle Efficiently Inhibits Lung Metastasis. Molecular Therapy, 2012, 20, 609-615.	8.2	116
76	High Co-loading Capacity and Stimuli-Responsive Release Based on Cascade Reaction of Self-Destructive Polymer for Improved Chemo-Photodynamic Therapy. ACS Nano, 2019, 13, 7010-7023.	14.6	116
77	A simple but effective cancer vaccine consisting of an antigen and a cationic lipid. Cancer Immunology, Immunotherapy, 2008, 57, 517-530.	4.2	112
78	Targeted Intracellular Delivery of Antisense Oligonucleotides via Conjugation with Small-Molecule Ligands. Journal of the American Chemical Society, 2010, 132, 8848-8849.	13.7	111
79	Nanoparticle delivery of HIF1α siRNA combined with photodynamic therapy as a potential treatment strategy for head-and-neck cancer. Cancer Letters, 2015, 359, 65-74.	7.2	111
80	Surface-Modified LPD Nanoparticles for Tumor Targeting. Annals of the New York Academy of Sciences, 2006, 1082 , $1-8$.	3.8	110
81	Reactive oxygen species play a central role in the activity of cationic liposome based cancer vaccine. Journal of Controlled Release, 2008, 130, 22-28.	9.9	110
82	Nanoformulated Codelivery of Quercetin and Alantolactone Promotes an Antitumor Response through Synergistic Immunogenic Cell Death for Microsatellite-Stable Colorectal Cancer. ACS Nano, 2019, 13, 12511-12524.	14.6	110
83	Transient and Local Expression of Chemokine and Immune Checkpoint Traps To Treat Pancreatic Cancer. ACS Nano, 2017, 11, 8690-8706.	14.6	108
84	Codelivery of VEGF siRNA and Gemcitabine Monophosphate in a Single Nanoparticle Formulation for Effective Treatment of NSCLC. Molecular Therapy, 2013, 21, 1559-1569.	8.2	107
85	Synergistic anti-tumor effects of combined gemcitabine and cisplatin nanoparticles in a stroma-rich bladder carcinoma model. Journal of Controlled Release, 2014, 182, 90-96.	9.9	105
86	Targeted Nanoparticles Deliver siRNA to Melanoma. Journal of Investigative Dermatology, 2010, 130, 2790-2798.	0.7	102
87	Nanoparticle modulation of the tumor microenvironment enhances therapeutic efficacy of cisplatin. Journal of Controlled Release, 2015, 217, 27-41.	9.9	101
88	Local Blockade of Interleukin 10 and C-X-C Motif Chemokine Ligand 12 with Nano-Delivery Promotes Antitumor Response in Murine Cancers. ACS Nano, 2018, 12, 9830-9841.	14.6	101
89	Systemic administration of LPD prepared with CpG oligonucleotides inhibits the growth of established pulmonary metastases by stimulating innate and acquired antitumor immune responses. Cancer Immunology, Immunotherapy, 2001, 50, 503-514.	4.2	100
90	A Highly Efficient Synthetic Vector: Nonhydrodynamic Delivery of DNA to Hepatocyte Nuclei <i>in Vivo</i> . ACS Nano, 2013, 7, 5376-5384.	14.6	100

#	Article	IF	Citations
91	Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: Turning a bone antiresorptive agent into an anticancer therapeutic. Biomaterials, 2016, 82, 178-193.	11.4	100
92	Targeted drug delivery to melanoma. Advanced Drug Delivery Reviews, 2018, 127, 208-221.	13.7	99
93	Esterase-catalyzed dePEGylation of pH-sensitive vesicles modified with cleavable PEG-lipid derivatives. Journal of Controlled Release, 2008, 130, 238-245.	9.9	97
94	Lipid–calcium phosphate nanoparticles for delivery to the lymphatic system and SPECT/CT imaging of lymph node metastases. Biomaterials, 2014, 35, 4688-4698.	11.4	97
95	Exploring the Tumor Microenvironment with Nanoparticles. Cancer Treatment and Research, 2015, 166, 193-226.	0.5	97
96	Sequential Injection of Cationic Liposome and Plasmid DNA Effectively Transfects the Lung with Minimal Inflammatory Toxicity. Molecular Therapy, 2001, 3, 673-682.	8.2	96
97	Effects of polyethyleneglycol chain length and phospholipid acyl chain composition on the interaction of polyethyleneglycol-phospholipid conjugates with phospholipid: implications in liposomal drug delivery. Pharmaceutical Research, 1996, 13, 710-717.	3.5	95
98	Nano-puerarin regulates tumor microenvironment and facilitates chemo- and immunotherapy in murine triple negative breast cancer model. Biomaterials, 2020, 235, 119769.	11.4	93
99	Novel Cationic Lipid That Delivers siRNA and Enhances Therapeutic Effect in Lung Cancer Cells. Molecular Pharmaceutics, 2009, 6, 696-705.	4.6	90
100	Relaxin gene delivery mitigates liver metastasis and synergizes with check point therapy. Nature Communications, 2019, 10, 2993.	12.8	90
101	Immunostimulation Mechanism of LPD Nanoparticle as a Vaccine Carrier. Molecular Pharmaceutics, 2005, 2, 22-28.	4.6	88
102	Tumor-penetrating peptide fused EGFR single-domain antibody enhances cancer drug penetration into 3D multicellular spheroids and facilitates effective gastric cancer therapy. Journal of Controlled Release, 2015, 200, 188-200.	9.9	87
103	Intravesical liposome administration—a novel treatment for hyperactive bladder in the rat. Urology, 2003, 61, 656-663.	1.0	86
104	Biodistribution Studies of Nanoparticles Using Fluorescence Imaging: A Qualitative or Quantitative Method?. Pharmaceutical Research, 2012, 29, 3273-3277.	3.5	86
105	Curcumin Micelles Remodel Tumor Microenvironment and Enhance Vaccine Activity in an Advanced Melanoma Model. Molecular Therapy, 2016, 24, 364-374.	8.2	86
106	Effect of immune response on gene transfer to the lung via systemic administration of cationic lipidic vectors. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L796-L804.	2.9	85
107	Systemic delivery of gemcitabine triphosphate via LCP nanoparticles for NSCLC and pancreatic cancer therapy. Biomaterials, 2013, 34, 3447-3458.	11.4	85
108	Liposome-polycation-DNA (LPD) particle as a carrier and adjuvant for protein-based vaccines: Therapeutic effect against cervical cancer. Cancer Immunology, Immunotherapy, 2005, 54, 1180-1190.	4.2	79

#	Article	IF	CITATIONS
109	Nanoparticle Delivery of Pooled siRNA for Effective Treatment of Non-Small Cell Lung Caner. Molecular Pharmaceutics, 2012, 9, 2280-2289.	4.6	79
110	Combinational delivery of c-myc siRNA and nucleoside analogs in a single, synthetic nanocarrier for targeted cancer therapy. Biomaterials, 2013, 34, 8459-8468.	11.4	79
111	The Cytochrome P450 Epoxygenase Pathway Regulates the Hepatic Inflammatory Response in Fatty Liver Disease. PLoS ONE, 2014, 9, e110162.	2.5	79
112	Preparation of optimized lipid-coated calcium phosphate nanoparticles for enhanced in vitro gene delivery to breast cancer cells. Journal of Materials Chemistry B, 2015, 3, 6805-6812.	5.8	77
113	Nanoparticle-Mediated Trapping of Wnt Family Member 5A in Tumor Microenvironments Enhances Immunotherapy for B-Raf Proto-Oncogene Mutant Melanoma. ACS Nano, 2018, 12, 1250-1261.	14.6	76
114	Cancer Immunotherapy and Nanomedicine. Pharmaceutical Research, 2011, 28, 200-214.	3.5	75
115	Non-viral nanocarriers for siRNA delivery in breast cancer. Journal of Controlled Release, 2014, 190, 440-450.	9.9	75
116	Co-delivery of polymeric metformin and cisplatin by self-assembled core-membrane nanoparticles to treat non-small cell lung cancer. Journal of Controlled Release, 2016, 244, 63-73.	9.9	74
117	Influence of polyethylene glycol density and surface lipid on pharmacokinetics and biodistribution of lipid-calcium-phosphate nanoparticles. Biomaterials, 2014, 35, 3027-3034.	11.4	73
118	Nano-delivery of fraxinellone remodels tumor microenvironment and facilitates therapeutic vaccination in desmoplastic melanoma. Theranostics, 2018, 8, 3781-3796.	10.0	73
119	Lipid-based vectors for siRNA delivery. Journal of Drug Targeting, 2012, 20, 724-735.	4.4	72
120	Hepatic macrophages act as a central hub for relaxin-mediated alleviation of liver fibrosis. Nature Nanotechnology, 2021, 16, 466-477.	31.5	72
121	Unmodified drug used as a material to construct nanoparticles: delivery of cisplatin for enhanced anti-cancer therapy. Journal of Controlled Release, 2014, 174, 137-142.	9.9	71
122	Nanoparticle Delivered VEGF-A siRNA Enhances Photodynamic Therapy for Head and Neck Cancer Treatment. Molecular Therapy, 2016, 24, 106-116.	8.2	71
123	Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies. Theranostics, 2020, 10, 3099-3117.	10.0	70
124	Two nanoformulations induce reactive oxygen species and immunogenetic cell death for synergistic chemo-immunotherapy eradicating colorectal cancer and hepatocellular carcinoma. Molecular Cancer, 2021, 20, 10.	19.2	70
125	Nanoparticle delivery of CDDO-Me remodels the tumor microenvironment and enhances vaccine therapy for melanoma. Biomaterials, 2015, 68, 54-66.	11.4	69
126	Nanodrug Delivery Systems Modulate Tumor Vessels to Increase the Enhanced Permeability and Retention Effect. Journal of Personalized Medicine, 2021, 11, 124.	2.5	68

#	Article	IF	Citations
127	Local and transient gene expression primes the liver to resist cancer metastasis. Science Translational Medicine, 2016, 8, 364ra153.	12.4	67
128	Nanoparticle Delivery of RIG-I Agonist Enables Effective and Safe Adjuvant Therapy in Pancreatic Cancer. Molecular Therapy, 2019, 27, 507-517.	8.2	67
129	An inflammatory-CCRK circuitry drives mTORC1-dependent metabolic and immunosuppressive reprogramming in obesity-associated hepatocellular carcinoma. Nature Communications, 2018, 9, 5214.	12.8	66
130	Lipid–protamine–DNA-mediated antigen delivery to antigen-presenting cells results in enhanced anti-tumor immune responses. Molecular Therapy, 2003, 7, 640-648.	8.2	65
131	Nanoparticle delivery of a peptide targeting EGFR signaling. Journal of Controlled Release, 2012, 157, 279-286.	9.9	65
132	Nickel(II) Dithiocarbamate Complexes Containing Sulforhodamine B as Fluorescent Probes for Selective Detection of Nitrogen Dioxide. Journal of the American Chemical Society, 2013, 135, 5312-5315.	13.7	64
133	Macrophageâ€Mediated Tumor Cell Phagocytosis: Opportunity for Nanomedicine Intervention. Advanced Functional Materials, 2021, 31, 2006220.	14.9	63
134	Induction of Cytotoxic T-Lymphocytes and Antitumor Activity by a Liposomal Lipopeptide Vaccine. Molecular Pharmaceutics, 2008, 5, 464-471.	4.6	61
135	Intravesical protamine sulfate and potassium chloride as a model for bladder hyperactivity. Urology, 2003, 61, 664-670.	1.0	60
136	Analyte Regeneration Fluorescent Probes for Formaldehyde Enabled by Regiospecific Formaldehyde-Induced Intramolecularity. Journal of the American Chemical Society, 2018, 140, 16408-16412.	13.7	60
137	Tackling TAMs for Cancer Immunotherapy: It's Nano Time. Trends in Pharmacological Sciences, 2020, 41, 701-714.	8.7	60
138	A novel cationic lipid with intrinsic antitumor activity to facilitate gene therapy of TRAIL DNA. Biomaterials, 2016, 102, 239-248.	11.4	59
139	Investigation of phosphorylated adjuvants co-encapsulated with a model cancer peptide antigen for the treatment of colorectal cancer and liver metastasis. Vaccine, 2017, 35, 2550-2557.	3.8	59
140	Enantiospecific adjuvant activity of cationic lipid DOTAP in cancer vaccine. Cancer Immunology, Immunotherapy, 2011, 60, 629-638.	4.2	57
141	Targeted delivery of EV peptide to tumor cell cytoplasm using lipid coated calcium carbonate nanoparticles. Cancer Letters, 2013, 334, 311-318.	7.2	57
142	Drug delivery systems targeting tumor-associated fibroblasts for cancer immunotherapy. Cancer Letters, 2019, 448, 31-39.	7.2	55
143	Membrane-core nanoparticles for cancer nanomedicine. Advanced Drug Delivery Reviews, 2020, 156, 23-39.	13.7	53
144	Current and Future Theranostic Applications of the Lipid-Calcium-Phosphate Nanoparticle Platform. Theranostics, 2016, 6, 918-929.	10.0	51

#	Article	IF	Citations
145	Nonâ€Viral Vector as Vaccine Carrier. Advances in Genetics, 2005, 54, 315-337.	1.8	50
146	Enhancing Nanoparticle Accumulation and Retention in Desmoplastic Tumors via Vascular Disruption for Internal Radiation Therapy. Theranostics, 2017, 7, 253-269.	10.0	50
147	BRAF peptide vaccine facilitates therapy of murine BRAF-mutant melanoma. Cancer Immunology, Immunotherapy, 2018, 67, 299-310.	4.2	48
148	Coating of Mannan on LPD Particles Containing HPV E7 Peptide Significantly Enhances Immunity Against HPV-Positive Tumor. Pharmaceutical Research, 2004, 21, 1018-1025.	3.5	46
149	Liver specific gene immunotherapies resolve immune suppressive ectopic lymphoid structures of liver metastases and prolong survival. Biomaterials, 2017, 141, 260-271.	11.4	46
150	Sigma receptor-mediated targeted delivery of anti-angiogenic multifunctional nanodrugs for combination tumor therapy. Journal of Controlled Release, 2016, 228, 107-119.	9.9	45
151	Trp2 Peptide Vaccine Adjuvanted with (R)-DOTAP Inhibits Tumor Growth in an Advanced Melanoma Model. Molecular Pharmaceutics, 2012, 9, 261-268.	4.6	44
152	Strategies on the nuclear-targeted delivery of genes. Journal of Drug Targeting, 2013, 21, 926-939.	4.4	44
153	Vasodilator Hydralazine Promotes Nanoparticle Penetration in Advanced Desmoplastic Tumors. ACS Nano, 2019, 13, 1751-1763.	14.6	44
154	A Minimalist Binary Vaccine Carrier for Personalized Postoperative Cancer Vaccine Therapy. Advanced Materials, 2022, 34, e2109254.	21.0	44
155	Interactions of Phospholipid Vesicles with Murine Lymphocytes. Membrane Biochemistry, 1978, 1, 1-25.	0.6	42
156	Tri-peptide cationic lipids for gene delivery. Journal of Materials Chemistry B, 2015, 3, 119-126.	5.8	41
157	A radio-theranostic nanoparticle with high specific drug loading for cancer therapy and imaging. Journal of Controlled Release, 2015, 217, 170-182.	9.9	41
158	Exploiting in situ antigen generation and immune modulation to enhance chemotherapy response in advanced melanoma: A combination nanomedicine approach. Cancer Letters, 2016, 379, 32-38.	7.2	41
159	Celastrol nanoemulsion induces immunogenicity and downregulates PD-L1 to boost abscopal effect in melanoma therapy. Biomaterials, 2021, 269, 120604.	11.4	41
160	Improving plasmid DNA-mediated liver gene transfer by prolonging its retention in the hepatic vasculature. Journal of Gene Medicine, 2001, 3, 569-576.	2.8	40
161	Nano delivery of simvastatin targets liver sinusoidal endothelial cells to remodel tumor microenvironment for hepatocellular carcinoma. Journal of Nanobiotechnology, 2022, 20, 9.	9.1	40
162	Nanocarrier-mediated immunogenic chemotherapy for triple negative breast cancer. Journal of Controlled Release, 2020, 323, 431-441.	9.9	39

#	Article	IF	CITATIONS
163	Tumor-targeted gene therapy with lipid nanoparticles inhibits tumor-associated adipocytes and remodels the immunosuppressive tumor microenvironment in triple-negative breast cancer. Nanoscale Horizons, 2021, 6, 319-329.	8.0	39
164	Intelligent design of multifunctional lipid-coated nanoparticle platforms for cancer therapy. Therapeutic Delivery, 2012, 3, 1429-1445.	2.2	38
165	Recent Advances in Liposome-Based Nanoparticles for Antigen Delivery. Polymer Reviews, 2007, 47, 329-344.	10.9	36
166	Turning an antiviral into an anticancer drug: Nanoparticle delivery of acyclovir monophosphate. Journal of Controlled Release, 2013, 170, 414-420.	9.9	35
167	Inhibiting PI3 kinase- \hat{l}^3 in both myeloid and plasma cells remodels the suppressive tumor microenvironment in desmoplastic tumors. Journal of Controlled Release, 2019, 309, 173-180.	9.9	35
168	Systemic production of IL-12 by naked DNA mediated gene transfer: toxicity and attenuation of transgene expressionin vivo. Journal of Gene Medicine, 2001, 3, 384-393.	2.8	34
169	The effects of salt on the physicochemical properties and immunogenicity of protein based vaccine formulated in cationic liposome. International Journal of Pharmaceutics, 2009, 368, 56-62.	5.2	32
170	Precise delivery of obeticholic acid via nanoapproach for triggering natural killer T cell-mediated liver cancer immunotherapy. Acta Pharmaceutica Sinica B, 2020, 10, 2171-2182.	12.0	32
171	Natural products remodel cancer-associated fibroblasts in desmoplastic tumors. Acta Pharmaceutica Sinica B, 2020, 10, 2140-2155.	12.0	32
172	Immunoliposomes: Preparation, properties, and applications. Medicinal Research Reviews, 1986, 6, 171-195.	10.5	30
173	Lipid-Protamine-DNA-Mediated Antigen Delivery. Current Drug Delivery, 2005, 2, 401-406.	1.6	29
174	Nanoparticleâ€mediated HMGA1 Silencing Promotes Lymphocyte Infiltration and Boosts Checkpoint Blockade Immunotherapy for Cancer. Advanced Functional Materials, 2018, 28, 1802847.	14.9	29
175	Anticancer activities of phytoconstituents and their liposomal targeting strategies against tumor cells and the microenvironment. Advanced Drug Delivery Reviews, 2020, 154-155, 245-273.	13.7	29
176	Incorporation of histone derived recombinant protein for enhanced disassembly of core-membrane structured liposomal nanoparticles for efficient siRNA delivery. Journal of Controlled Release, 2013, 179-189.	9.9	28
177	Nonviral Vectors. Advances in Genetics, 2014, 88, 1-12.	1.8	28
178	Novel Gemini cationic lipids with carbamate groups for gene delivery. Journal of Materials Chemistry B, 2014, 2, 2920-2928.	5.8	28
179	Dual Functional LipoMET Mediates Envelope-type Nanoparticles to Combinational Oncogene Silencing and Tumor Growth Inhibition. Molecular Therapy, 2017, 25, 1567-1579.	8.2	28
180	Strategies targeting tumor immune and stromal microenvironment and their clinical relevance. Advanced Drug Delivery Reviews, 2022, 183, 114137.	13.7	28

#	Article	IF	CITATIONS
181	Improved Encapsulation of DNA in pH-Sensitive Liposomes for Transfection. Journal of Liposome Research, 1992, 2, 125-139.	3.3	27
182	Multifunctional lipid-coated calcium phosphate nanoplatforms for complete inhibition of large triple negative breast cancer via targeted combined therapy. Biomaterials, 2019, 216, 119232.	11.4	27
183	RNA Interference-Based Cancer Drugs: The Roadblocks, and the "Delivery―of the Promise. Nucleic Acid Therapeutics, 2019, 29, 61-66.	3.6	27
184	Exploration of supersaturable lacidipine ternary amorphous solid dispersion for enhanced dissolution and in vivo absorption. European Journal of Pharmaceutical Sciences, 2019, 139, 105043.	4.0	26
185	Locally Trapping the Câ€C Chemokine Receptor Type 7 by Gene Delivery Nanoparticle Inhibits Lymphatic Metastasis Prior to Tumor Resection. Small, 2019, 15, e1805182.	10.0	25
186	The anti-fibrotic drug pirfenidone inhibits liver fibrosis by targeting the small oxidoreductase glutaredoxin-1. Science Advances, 2021, 7, eabg9241.	10.3	25
187	Remodeling the fibrotic tumor microenvironment of desmoplastic melanoma to facilitate vaccine immunotherapy. Nanoscale, 2020, 12, 3400-3410.	5.6	24
188	The role of carrier size in the pharmacodynamics of antisense and siRNA oligonucleotides. Journal of Drug Targeting, 2010, 18, 567-574.	4.4	23
189	A Circle RNA Regulatory Axis Promotes Lung Squamous Metastasis via CDR1-Mediated Regulation of Golgi Trafficking. Cancer Research, 2020, 80, 4972-4985.	0.9	23
190	Relaxin gene delivery modulates macrophages to resolve cancer fibrosis and synergizes with immune checkpoint blockade therapy. Science Advances, $2021, 7, \ldots$	10.3	23
191	Activity of different phospholipids in attenuating hyperactivity in bladder irritation. BJU International, 2008, 101, 627-632.	2.5	22
192	Turning a water and oil insoluble cisplatin derivative into a nanoparticle formulation for cancer therapy. Biomaterials, 2014, 35, 7647-7653.	11.4	22
193	MTB driven B cells producing IL-35 and secreting high level of IL-10 in the patients with active pulmonary tuberculosis. Molecular Immunology, 2019, 112, 175-181.	2.2	22
194	S-nitrosation on zinc finger motif of PARP-1 as a mechanism of DNA repair inhibition by arsenite. Oncotarget, 2016, 7, 80482-80492.	1.8	22
195	Targeted delivery of RNAi therapeutics for cancer therapy. Nanomedicine, 2010, 5, 1483-1486.	3.3	21
196	Toxicity of environmentally-relevant concentrations of arsenic on developing T lymphocyte. Environmental Toxicology and Pharmacology, 2018, 62, 107-113.	4.0	21
197	Liposomal Nanostructures for Drug Delivery in Gastrointestinal Cancers. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 647-656.	2.5	21
198	Monomethylarsonous acid (MMA ⁺³) Inhibits IL-7 Signaling in Mouse Pre-B Cells. Toxicological Sciences, 2016, 149, 289-299.	3.1	20

#	Article	IF	Citations
199	BTLA-Expressing Dendritic Cells in Patients With Tuberculosis Exhibit Reduced Production of IL-12/IFN- \hat{l} ± and Increased Production of IL-4 and TGF- \hat{l}^2 , Favoring Th2 and Foxp3+ Treg Polarization. Frontiers in Immunology, 2020, 11, 518.	4.8	20
200	Size Homogeneity of a Liposome Preparation is Crucial for Liposome Biodistribution in Vivo. Journal of Liposome Research, 1992, 2, 57-66.	3.3	19
201	LPD Nanoparticles-Novel Nonviral Vector for Efficient Gene Delivery., 2002, 69, 073-081.		19
202	Composite Nanoparticles for Gene Delivery. Advances in Genetics, 2014, 88, 111-137.	1.8	19
203	Relaxin-FOLFOX-IL-12 triple combination therapy engages memory response and achieves long-term survival in colorectal cancer liver metastasis. Journal of Controlled Release, 2020, 319, 213-221.	9.9	19
204	Bryostatin-I: A dendritic cell stimulator for chemokines induction and a promising adjuvant for a peptide based cancer vaccine. Cytokine, 2010, 52, 238-244.	3.2	18
205	Lipid-Coated Calcium Phosphate Nanoparticles for Nonviral Gene Therapy. Advances in Genetics, 2014, 88, 205-229.	1.8	18
206	Inhibition of red blood cell development by arsenic-induced disruption of GATA-1. Scientific Reports, 2020, 10, 19055.	3.3	18
207	Fluorophore-Promoted Facile Deprotonation and Exocyclic Five-Membered Ring Cyclization for Selective and Dynamic Tracking of Labile Glyoxals. Analytical Chemistry, 2020, 92, 13829-13838.	6.5	18
208	Interactions of Phospholipid Vesicles with Murine Lymphocytes. Membrane Biochemistry, 1978, 1, 27-42.	0.6	17
209	Transmembrane nature of acetylcholine receptor as evidenced by protease sensitivity. FEBS Letters, 1979, 102, 9-12.	2.8	17
210	Maximizing the Supported Bilayer Phenomenon: Liposomes Comprised Exclusively of PEGylated Phospholipids for Enhanced Systemic and Lymphatic Delivery. ACS Applied Materials & Samp; Interfaces, 2016, 8, 24361-24367.	8.0	17
211	Design of Virus-Mimicking Polyelectrolyte Complexes for Enhanced Oral Insulin Delivery. Journal of Pharmaceutical Sciences, 2019, 108, 3408-3415.	3.3	17
212	Theranostic etoposide phosphate/indium nanoparticles for cancer therapy and imaging. Nanoscale, 2015, 7, 18542-18551.	5.6	16
213	A naphthalimide-aminal-based pH-sensitive fluorescent donor for lysosome-targeted formaldehyde release and fluorescence turn-on readout. Chemical Communications, 2019, 55, 7053-7056.	4.1	16
214	Manipulating Liver Bile Acid Signaling by Nanodelivery of Bile Acid Receptor Modulators for Liver Cancer Immunotherapy. Nano Letters, 2021, 21, 6781-6791.	9.1	15
215	Therapeutic and delivery strategies of phytoconstituents for renal fibrosis. Advanced Drug Delivery Reviews, 2021, 177, 113911.	13.7	15
216	Minimal uranium accumulation in lymphoid tissues following an oral 60-day uranyl acetate exposure in male and female C57BL/6J mice. PLoS ONE, 2018, 13, e0205211.	2.5	14

#	Article	IF	Citations
217	Synergistic effect of Soluplus and hyaluronic acid on the supersaturation maintenance of lovastatin: The facilitated in vitro-in vivo performance and improved physical stability. Carbohydrate Polymers, 2019, 222, 114978.	10.2	14
218	Effective Combined Photodynamic Therapy with Lipid Platinum Chloride Nanoparticles Therapies of Oral Squamous Carcinoma Tumor Inhibition. Journal of Clinical Medicine, 2019, 8, 2112.	2.4	14
219	Elevation in the counts of IL-35-producing B cells infiltrating into lung tissue in mycobacterial infection is associated with the downregulation of Th1/Th17 and upregulation of Foxp3+Treg. Scientific Reports, 2020, 10, 13212.	3.3	14
220	Target-Specific Binding of Immunoliposomes in Vivo. Journal of Liposome Research, 1990, 1, 393-406.	3.3	13
221	Improved DNA/emulsion complex stabilized by poly(ethylene glycol) conjugated phospholipid. Pharmaceutical Research, 2001, 18, 1480-1484.	3.5	13
222	Nanomaterial Manipulation of Immune Microenvironment in the Diseased Liver. Advanced Functional Materials, 2019, 29, 1805760.	14.9	13
223	Functional suppression of macrophages derived from THP-1 cells by environmentally-relevant concentrations of arsenite. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2018, 214, 36-42.	2.6	13
224	A PET-based fluorescent probe for monitoring labile Fe(<scp>ii</scp>) pools in macrophage activations and ferroptosis. Chemical Communications, 2022, 58, 2979-2982.	4.1	13
225	Formaldehyde reinforces pro-inflammatory responses of macrophages through induction of glycolysis. Chemosphere, 2021, 282, 131149.	8.2	12
226	Multistage Delivery Technologies: Multifunctional, Interdisciplinary Approaches to Nanomedicine. Molecular Therapy, 2016, 24, 849-851.	8.2	11
227	Nano-trapping CXCL13 reduces regulatory B cells in tumor microenvironment and inhibits tumor growth. Journal of Controlled Release, 2022, 343, 303-313.	9.9	11
228	On the article "Findings questioning the involvement of Sigma-1 receptor in the uptake of anisamide-decorated particles―[J. Control. Release 224 (2016) 229–238]. Journal of Controlled Release, 2016, 243, 382-385.	9.9	10
229	Mebendazole is a potent inhibitor to chemoresistant T cell acute lymphoblastic leukemia cells. Toxicology and Applied Pharmacology, 2020, 396, 115001.	2.8	10
230	Circular RNA hsa_circ_0001380 in peripheral blood as a potential diagnostic biomarker for active pulmonary tuberculosis. Molecular Medicine Reports, 2020, 21, 1890-1896.	2.4	10
231	Formulation of two lipid-based membrane–core nanoparticles for FOLFOX combination therapy. Nature Protocols, 2022, 17, 1818-1831.	12.0	10
232	Nanovaccines for remodeling the suppressive tumor microenvironment: New horizons in cancer immunotherapy. Frontiers of Chemical Science and Engineering, 2017, 11, 676-684.	4.4	9
233	Tumor neoantigen heterogeneity impacts bystander immune inhibition of pancreatic cancer growth. Translational Oncology, 2020, 13, 100856.	3.7	9
234	Preparation and Characterization of pH-Sensitive Vesicles Made of Cholesteryl Hemisuccinate. Drug Development and Industrial Pharmacy, 2008, 34, 134-141.	2.0	8

#	Article	IF	CITATIONS
235	Hepatic RNA interference: delivery by synthetic vectors. Drug Delivery and Translational Research, 2014, 4, 61-73.	5.8	8
236	Nano-delivery of Gemcitabine Derivative as a Therapeutic Strategy in a Desmoplastic KRAS Mutant Pancreatic Cancer. AAPS Journal, 2020, 22, 88.	4.4	8
237	Magnolol-loaded cholesteryl biguanide conjugate hydrochloride nanoparticles for triple-negative breast cancer therapy. International Journal of Pharmaceutics, 2022, 615, 121509.	5.2	8
238	Evaluation of Toxicity in Mouse Bone Marrow Progenitor Cells. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2016, 67, 18.9.1-18.9.12.	1.1	7
239	Novel Pyropheophorbide Phosphatydic Acids Photosensitizer Combined EGFR siRNA Gene Therapy for Head and Neck Cancer Treatment. Pharmaceutics, 2021, 13, 1435.	4.5	6
240	Arsenite and monomethylarsonous acid disrupt erythropoiesis through combined effects on differentiation and survival pathways in early erythroid progenitors. Toxicology Letters, 2021, 350, 111-120.	0.8	6
241	Liposome Vectors for In Vivo Gene Delivery. Current Protocols in Human Genetics, 1999, 20, Unit 12.8.	3.5	5
242	Methylglyoxal produced by tumor cells through formaldehyde-enhanced Warburg effect potentiated polarization of tumor-associated macrophages. Toxicology and Applied Pharmacology, 2022, 438, 115910.	2.8	5
243	Biotin-Bearing pH-Sensitive Liposomes: High-Affinity Binding to Avidin Layer. Journal of Liposome Research, 1989, 1, 233-244.	3.3	4
244	Oral Metformin and Polymetformin Reprogram Immunosuppressive Microenvironment and Boost Immune Checkpoint Inhibitor Therapy in Colorectal Cancer. Advanced Therapeutics, 2020, 3, 2000168.	3.2	4
245	Preparation and Characterization of siRNA-Loaded Liposomes. Methods in Molecular Biology, 2021, 2282, 159-169.	0.9	4
246	Drug Delivery by Organ-Specific Immunoliposomes. ACS Symposium Series, 1991, , 275-284.	0.5	3
247	Monomethylarsonous acid: Induction of DNA damage and oxidative stress in mouse natural killer cells at environmentally-relevant concentrations. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2018, 832-833, 1-6.	1.7	3
248	Basic fibroblast growth factor blockade enhances lung cancer cell invasion by activating the AKT/MMPâ€2/VEGF pathway. Basic and Clinical Pharmacology and Toxicology, 2020, 126, 43-50.	2.5	3
249	Formaldehyde inhibits development of T lymphocytes in mice. Toxicological and Environmental Chemistry, 2020, 102, 473-489.	1.2	3
250	Tinagl1 Gene Therapy Suppresses Growth and Remodels the Microenvironment of Triple Negative Breast Cancer. Molecular Pharmaceutics, 2021, 18, 2032-2038.	4.6	3
251	Enhanced Neutrophil Stimulation by Phorbol Ester Encapsulated in pH-Sensitive Liposomes. Journal of Liposome Research, 1988, 1, 63-79.	3.3	2
252	Targeted gene delivery: the role of peptide nucleic acid. International Journal of Peptide Research and Therapeutics, 2003, 10, 161-167.	1.9	2

#	Article	IF	CITATIONS
253	Cancer Therapy: Esteraseâ€Activated Chargeâ€Reversal Polymer for Fibroblastâ€Exempt Cancer Gene Therapy (Adv. Mater. 48/2016). Advanced Materials, 2016, 28, 10578-10578.	21.0	2
254	Cisplatin encapsulated nanoparticle as a therapeutic agent for anticancer treatment. Proceedings of SPIE, $2016, \ldots$	0.8	2
255	Targeted gene delivery: the role of peptide nucleic acid. International Journal of Peptide Research and Therapeutics, 2003, 10, 161-167.	0.1	1
256	Pieter Cullis: an outstanding lipid biophysicist, drug delivery scientist, educator, and entrepreneur. Journal of Drug Targeting, 2016, 24, 762-764.	4.4	1
257	A dosimetric model for the heterogeneous delivery of radioactive nanoparticles In vivo: a feasibility study. Radiation Oncology, 2017, 12, 54.	2.7	1
258	Preface: Nanoformulations for combination or cascade anticancer therapy. Advanced Drug Delivery Reviews, 2017, 115, 1-2.	13.7	1
259	Lipid-Coated Cisplatin Nanoparticles for Insoluble Drug Loading. Biomaterial Engineering, 2021, , 97-109.	0.2	1
260	Myricetin protects natural killer cells from arsenite induced DNA damage by attenuating oxidative stress and retaining poly(ADP-Ribose) polymerase 1 activity. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2021, 865, 503337.	1.7	1
261	Novel liposomal technology applied in esophageal cancer treatment. , 2018, , .		1
262	An anthracenecarboximide-guanidine fluorescent probe for selective detection of glyoxals under weak acidic conditions. RSC Advances, 2022, 12, 9473-9477.	3.6	1
263	Targeted gene delivery: The role of peptide nucleic acid. International Journal of Peptide Research and Therapeutics, 2005, 10, 161-167.	1.9	0
264	Nanoparticle-Mediated RNA Interference for Cancer Therapy. , 2018, , 521-539.		0
265	Lipid-Coated Cisplatin Nanoparticles for Insoluble Drug Loading. , 2018, , 1-13.		0
266	Response to Comment on "Trapping of Lipopolysaccharide to Promote Immunotherapy against Colorectal Cancer and Attenuate Liver Metastasis― Advanced Materials, 2019, 31, e1902569.	21.0	0
267	Liposome-Based Nanoparticles: Antigen Delivery. , 0, , 4369-4377.		O