Eva Vargas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1261339/publications.pdf

Version: 2024-02-01

516710 713466 23 836 16 21 h-index citations g-index papers 24 24 24 980 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Microneedle-Based Detection of Ketone Bodies along with Glucose and Lactate: Toward Real-Time Continuous Interstitial Fluid Monitoring of Diabetic Ketosis and Ketoacidosis. Analytical Chemistry, 2020, 92, 2291-2300.	6.5	154
2	Enzymatic/Immunoassay Dualâ€Biomarker Sensing Chip: Towards Decentralized Insulin/Glucose Detection. Angewandte Chemie - International Edition, 2019, 58, 6376-6379.	13.8	106
3	Wearable and Mobile Sensors for Personalized Nutrition. ACS Sensors, 2021, 6, 1745-1760.	7.8	106
4	Electrochemical affinity biosensors for fast detection of gene-specific methylations with no need for bisulfite and amplification treatments. Scientific Reports, 2018, 8, 6418.	3.3	62
5	Disposable Amperometric Polymerase Chain Reaction-Free Biosensor for Direct Detection of Adulteration with Horsemeat in Raw Lysates Targeting Mitochondrial DNA. Analytical Chemistry, 2017, 89, 9474-9482.	6. 5	47
6	Comparison of Different Strategies for the Development of Highly Sensitive Electrochemical Nucleic Acid Biosensors Using Neither Nanomaterials nor Nucleic Acid Amplification. ACS Sensors, 2018, 3, 211-221.	7.8	41
7	Simultaneous cortisol/insulin microchip detection using dual enzyme tagging. Biosensors and Bioelectronics, 2020, 167, 112512.	10.1	40
8	A review of biomarkers in the context of type 1 diabetes: Biological sensing for enhanced glucose control. Bioengineering and Translational Medicine, 2021, 6, e10201.	7.1	33
9	Single-Step Incubation Determination of miRNAs in Cancer Cells Using an Amperometric Biosensor Based on Competitive Hybridization onto Magnetic Beads. Sensors, 2018, 18, 863.	3.8	32
10	Magnetic Beads-Based Sensor with Tailored Sensitivity for Rapid and Single-Step Amperometric Determination of miRNAs. International Journal of Molecular Sciences, 2017, 18, 2151.	4.1	30
11	Fast amperometric immunoplatform for ovomucoid traces determination in fresh and baked foods. Sensors and Actuators B: Chemical, 2018, 265, 421-428.	7.8	29
12	Development of an integrated electrochemical biosensor for sucrose and its implementation in a continuous flow system for the simultaneous monitoring of sucrose, fructose and glucose. Talanta, 2013, 105, 93-100.	5 . 5	27
13	Non-invasive determination of glucose directly in raw fruits using a continuous flow system based on microdialysis sampling and amperometric detection at an integrated enzymatic biosensor. Analytica Chimica Acta, 2016, 914, 53-61.	5.4	27
14	Electrochemical sensor for rapid determination of fibroblast growth factor receptor 4 in raw cancer cell lysates. PLoS ONE, 2017, 12, e0175056.	2.5	22
15	Implementation of a new integrated d-lactic acid biosensor in a semiautomatic FIA system for the simultaneous determination of lactic acid enantiomers. Application to the analysis of beer samples. Talanta, 2016, 152, 147-154.	5.5	21
16	Direct PCR-free electrochemical biosensing of plant-food derived nucleic acids in genomic DNA extracts. Application to the determination of the key allergen Sola I 7 in tomato seeds. Biosensors and Bioelectronics, 2019, 137, 171-177.	10.1	21
17	Automatic bionalyzer using an integrated amperometric biosensor for the determination of L-malic acid in wines. Talanta, 2016, 158, 6-13.	5.5	15
18	Decentralized vitamin C & Decentralized vitamin C & Decentralized immune system support. Biosensors and Bioelectronics, 2021, 194, 113590.	10.1	14

#	Article	IF	CITATION
19	Automated Bioanalyzer Based on Amperometric Enzymatic Biosensors for the Determination of Ethanol in Low-Alcohol Beers. Beverages, 2017, 3, 22.	2.8	4
20	Concept of the "Universal Slope― Toward Substantially Shorter Decentralized Insulin Immunoassays. Analytical Chemistry, 2022, 94, 9217-9225.	6. 5	4
21	63-OR: Towards Point-of-Care Devices: First Evaluation of an Insulin Immunosensor for Type 1 Diabetes. Diabetes, 2020, 69 , .	0.6	1
22	Amperometric Immunosensing Scaffolds for Rapid, Simple, Non-Invasive and Accurate Determination of Protein Biomarkers of Well-Accepted and Emerging Clinical Importance. Proceedings (mdpi), 2017, 1, 727.	0.2	0
23	Improving Cancer Outcomes through Electrochemical Biosensing of Early Diagnosis/Prognosis Biomarkers in Human Biopsies. Proceedings (mdpi), 2017, 1 , .	0.2	O