
Hilton C Deeth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1261124/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipoprotein lipase and lipolysis in milk. International Dairy Journal, 2006, 16, 555-562.	1.5	459
2	Stability of Whey Proteins during Thermal Processing: A Review. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 1235-1251.	5.9	257
3	Proteomic analysis ofle-casein micro-heterogeneity. Proteomics, 2004, 4, 743-752.	1.3	106
4	Blocked Lysine in Dairy Products: Formation, Occurrence, Analysis, and Nutritional Implications. Comprehensive Reviews in Food Science and Food Safety, 2016, 15, 206-218.	5.9	100
5	Significance of frictional heating for effects of high pressure homogenisation on milk. Journal of Dairy Research, 2005, 72, 393-399.	0.7	80
6	Proteomic Analysis of Temperature-Dependent Changes in Stored UHT Milk. Journal of Agricultural and Food Chemistry, 2011, 59, 1837-1846.	2.4	80
7	Resolution and characterisation of multiple isoforms of bovine κ-casein by 2-DE following a reversible cysteine-tagging enrichment strategy. Proteomics, 2006, 6, 3087-3095.	1.3	78
8	Chemical and Physical Changes in Milk Protein Concentrate (MPC80) Powder during Storage. Journal of Agricultural and Food Chemistry, 2011, 59, 5465-5473.	2.4	75
9	Maillard Reaction and Protein Cross-Linking in Relation to the Solubility of Milk Powders. Journal of Agricultural and Food Chemistry, 2011, 59, 12473-12479.	2.4	72
10	Analysis ofO-glycosylation site occupancy in bovine ?-casein glycoforms separated by two-dimensional gel electrophoresis. Proteomics, 2005, 5, 990-1002.	1.3	70
11	Heat-induced and other chemical changes in commercial UHT milks. Journal of Dairy Research, 2005, 72, 442-446.	0.7	70
12	The influence of temperature on the foaming of milk. International Dairy Journal, 2008, 18, 994-1002.	1.5	59
13	Direct evidence for the role of Maillard reaction products in protein cross-linking in milk powder during storage. International Dairy Journal, 2013, 31, 83-91.	1.5	58
14	Influence of Dryer Type on Surface Characteristics of Milk Powders. Drying Technology, 2011, 29, 758-769.	1.7	57
15	Proteomics of major bovine milk proteins: Novel insights. International Dairy Journal, 2017, 67, 2-15.	1.5	56
16	Effect of lactose on crossâ€linking of milk proteins during heat treatments. International Journal of Dairy Technology, 2013, 66, 1-6.	1.3	52
17	Evaluation of tilapia skin gelatin as a mammalian gelatin replacer in acid milk gels and low-fat stirred yogurt. Journal of Dairy Science, 2017, 100, 3436-3447.	1.4	50
18	Practical consequences of calcium addition to and removal from milk and milk products. International Journal of Dairy Technology, 2015, 68, 1-10.	1.3	47

HILTON C DEETH

#	Article	IF	CITATIONS
19	A proteomic approach to detect lactosylation and other chemical changes in stored milk protein concentrate. Food Chemistry, 2012, 132, 655-662.	4.2	42
20	The effect of free Ca2+ on the heat stability and other characteristics of low-heat skim milk powder. International Dairy Journal, 2009, 19, 386-392.	1.5	41
21	Volatile sulfur compounds in pasteurised and UHT milk during storage. Dairy Science and Technology, 2014, 94, 241-253.	2.2	39
22	Optimum Thermal Processing for Extended Shelf-Life (ESL) Milk. Foods, 2017, 6, 102.	1.9	37
23	The rheological properties of calcium-induced milk gels. Journal of Food Engineering, 2014, 130, 45-51.	2.7	35
24	Magnesium in milk. International Dairy Journal, 2017, 71, 89-97.	1.5	35
25	Active packaging of UHT milk to prevent the development of stale flavour during storage. Packaging Technology and Science, 2007, 20, 137-146.	1.3	34
26	Methods of Detecting Fouling Caused by Heating of Milk. Food Reviews International, 2005, 21, 267-293.	4.3	33
27	The relationship between the levels of free fatty acids, lipoprotein lipase, carboxylesterase, <i>N</i> -acetyl-β-D-glucosaminidase, somatic cell count and other mastitis indices in bovine milk. Journal of Dairy Research, 1981, 48, 253-265.	0.7	31
28	Ultra-high-temperature processing of chocolate flavoured milk. Journal of Food Engineering, 2010, 96, 179-184.	2.7	31
29	Heatâ€induced coagulation of whole milk by high levels of calcium chloride. International Journal of Dairy Technology, 2012, 65, 183-190.	1.3	28
30	Effect of sulphydryl reagents on the heat stability of whey protein isolate. Food Chemistry, 2014, 163, 129-135.	4.2	28
31	Ageingâ€induced solubility loss in milk protein concentrate powder: effect of protein conformational modifications and interactions with water. Journal of the Science of Food and Agriculture, 2011, 91, 2576-2581.	1.7	27
32	Effects of mechanical agitation of raw milk on the milk-fat globule in relation to the level of induced lipolysis. Journal of Dairy Research, 1978, 45, 373-380.	0.7	25
33	Solid phase microextraction of stale flavour volatiles from the headspace of UHT milk. Journal of the Science of Food and Agriculture, 2005, 85, 2421-2428.	1.7	25
34	Kinetics of enthalpy relaxation of milk protein concentrate powder upon ageing and its effect on solubility. Food Chemistry, 2012, 134, 1368-1373.	4.2	25
35	Quantification of lactosylation of whey proteins in stored milk powder using multiple reaction monitoring. Food Chemistry, 2013, 141, 1203-1210.	4.2	23
36	Influence of pre-heat temperature, pre-heat holding time and high-heat temperature on fouling of reconstituted skim milk during UHT processing. Journal of Food Engineering, 2015, 153, 45-52.	2.7	20

HILTON C DEETH

#	Article	IF	CITATIONS
37	Heat-induced inactivation of enzymes in milk and dairy products. A review. International Dairy Journal, 2021, 121, 105104.	1.5	20
38	Characteristics of a calcium–milk coagulum. Journal of Food Engineering, 2013, 114, 147-152.	2.7	18
39	Textural and sensory properties of a calcium-induced milk gel. Journal of Food Engineering, 2014, 139, 10-12.	2.7	17
40	Reduction of aggregation of β-lactoglobulin during heating by dihydrolipoic acid. Journal of Dairy Research, 2013, 80, 383-389.	0.7	16
41	Protein Stability in Sterilised Milk and Milk Products. , 2016, , 247-286.		15
42	Sensory evaluation and storage stability of UHT milk fortified with iron, magnesium and zinc. Dairy Science and Technology, 2015, 95, 33-46.	2.2	14
43	Preparation and functional properties of protein coprecipitate from sheep milk. International Journal of Dairy Technology, 2011, 64, 461-466.	1.3	13
44	UHT milk contains multiple forms of αS1-casein that undergo degradative changes during storage. Food Chemistry, 2012, 133, 689-696.	4.2	13
45	UHT and Aseptic Processing of Milk and Milk Products. , 0, , 63-90.		9
46	The effect of UHT processing and storage on milk proteins. , 2020, , 385-421.		9
47	Identification of the binding of β-lactoglobulin (β-Lg) with sulfhydryl (–SH) blocking reagents by polyacrylamide gel electrophoresis (PAGE) and electrospray ionisation/time of flight-mass spectrometry (ESI/TOF-MS). LWT - Food Science and Technology, 2015, 63, 934-938.	2.5	6
48	Heat Treatment of Milk: Pasteurization (HTST) and thermization (LTLT). , 2022, , 645-654.		4
49	Milk Lipids: Lipolysis and Hydrolytic Rancidity. , 2019, , .		2
50	Lipases from Milk and Other Sources. Food Engineering Series, 2021, , 245-267.	0.3	2
51	Processing and Technology of Dairy Products: A Special Issue. Foods, 2020, 9, 272.	1.9	1
52	Heat Treatment of Milk: Extended Shelf-Life (ESL) and Ultra-High Temperature (UHT) Treatments. , 2022, , 618-631.		1
53	Lipase Action on Milk Fat. , 2020, , 21-39.		1
54	Effects of High-Temperature Milk Processing. Encyclopedia, 2021, 1, 1312-1321.	2.4	1

#	Article	IF	CITATIONS
55	Hypervariable Pili and Flagella Genes Provide Suitable New Targets for DNA High-Resolution Melt-Based Genotyping of Dairy Geobacillus spp Journal of Food Protection, 2014, 77, 1715-1722.	0.8	0
56	Non-thermal Technologies: Pulsed Electric Field Technology and Ultrasonication. , 2018, , .		0
57	Enzymes Indigenous to Milk: Lipases and Esterases. , 2022, , 677-681.		Ο
58	Lipolysis and Hydrolytic Rancidity. , 2022, , 827-834.		0