
Sebastian Primpke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1261013/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Research, 2017, 108, 365-372.	5.3	1,002
2	White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Science Advances, 2019, 5, eaax1157.	4.7	790
3	Arctic sea ice is an important temporal sink and means of transport for microplastic. Nature Communications, 2018, 9, 1505.	5.8	670
4	High Quantities of Microplastic in Arctic Deep-Sea Sediments from the HAUSGARTEN Observatory. Environmental Science & Technology, 2017, 51, 11000-11010.	4.6	630
5	Low numbers of microplastics detected in drinking water from ground water sources. Science of the Total Environment, 2019, 648, 631-635.	3.9	597
6	Reference database design for the automated analysis of microplastic samples based on Fourier transform infrared (FTIR) spectroscopy. Analytical and Bioanalytical Chemistry, 2018, 410, 5131-5141.	1.9	342
7	Enzymatic Purification of Microplastics in Environmental Samples. Environmental Science & Technology, 2017, 51, 14283-14292.	4.6	338
8	An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis. Analytical Methods, 2017, 9, 1499-1511.	1.3	320
9	Comparison of Raman and Fourier Transform Infrared Spectroscopy for the Quantification of Microplastics in the Aquatic Environment. Environmental Science & Technology, 2018, 52, 13279-13288.	4.6	251
10	Critical Assessment of Analytical Methods for the Harmonized and Cost-Efficient Analysis of Microplastics. Applied Spectroscopy, 2020, 74, 1012-1047.	1.2	249
11	Reporting Guidelines to Increase the Reproducibility and Comparability of Research on Microplastics. Applied Spectroscopy, 2020, 74, 1066-1077.	1.2	196
12	Spatial distribution of microplastics in sediments and surface waters of the southern North Sea. Environmental Pollution, 2019, 252, 1719-1729.	3.7	190
13	Tying up Loose Ends of Microplastic Pollution in the Arctic: Distribution from the Sea Surface through the Water Column to Deep-Sea Sediments at the HAUSGARTEN Observatory. Environmental Science & Technology, 2020, 54, 4079-4090.	4.6	183
14	Microplastic Spectral Classification Needs an Open Source Community: Open Specy to the Rescue!. Analytical Chemistry, 2021, 93, 7543-7548.	3.2	180
15	Microplastic Pollution in Benthic Midstream Sediments of the Rhine River. Environmental Science & Technology, 2019, 53, 6053-6062.	4.6	150
16	Different stories told by small and large microplastics in sediment - first report of microplastic concentrations in an urban recipient in Norway. Marine Pollution Bulletin, 2019, 141, 501-513.	2.3	138
17	Critical Review of Processing and Classification Techniques for Images and Spectra in Microplastic Research. Applied Spectroscopy, 2020, 74, 989-1010.	1.2	132
18	Toward the Systematic Identification of Microplastics in the Environment: Evaluation of a New Independent Software Tool (siMPle) for Spectroscopic Analysis. Applied Spectroscopy, 2020, 74, 1127-1138.	1.2	130

#	Article	IF	CITATIONS
19	A systems approach to understand microplastic occurrence and variability in Dutch riverine surface waters. Water Research, 2020, 176, 115723.	5.3	126
20	Comparison of pyrolysis gas chromatography/mass spectrometry and hyperspectral FTIR imaging spectroscopy for the analysis of microplastics. Analytical and Bioanalytical Chemistry, 2020, 412, 8283-8298.	1.9	112
21	Automated identification and quantification of microfibres and microplastics. Analytical Methods, 2019, 11, 2138-2147.	1.3	107
22	Characterizing the multidimensionality of microplastics across environmental compartments. Water Research, 2021, 202, 117429.	5.3	79
23	Rapid Identification and Quantification of Microplastics in the Environment by Quantum Cascade Laser-Based Hyperspectral Infrared Chemical Imaging. Environmental Science & Technology, 2020, 54, 15893-15903.	4.6	62
24	Bacterial biofilms colonizing plastics in estuarine waters, with an emphasis onÂVibrioÂspp. and their antibacterial resistance. PLoS ONE, 2020, 15, e0237704.	1.1	58
25	Library based identification and characterisation of polymers with nano-FTIR and IR-sSNOM imaging. Analytical Methods, 2019, 11, 5195-5202.	1.3	52
26	Systematic identification of microplastics in abyssal and hadal sediments of the Kuril Kamchatka trench. Environmental Pollution, 2021, 269, 116095.	3.7	51
27	Microplastics in the Weddell Sea (Antarctica): A Forensic Approach for Discrimination between Environmental and Vessel-Induced Microplastics. Environmental Science & Technology, 2021, 55, 15900-15911.	4.6	47
28	Microplastics in two German wastewater treatment plants: Year-long effluent analysis with FTIR and Py-GC/MS. Science of the Total Environment, 2022, 817, 152619.	3.9	42
29	Microplastic pollution in the Weser estuary and the German North Sea. Environmental Pollution, 2021, 288, 117681.	3.7	33
30	Comparison and uncertainty evaluation of two centrifugal separators for microplastic sampling. Journal of Hazardous Materials, 2021, 414, 125482.	6.5	24
31	Flexible Microdomain Specific Staining of Block Copolymers for 3D Optical Nanoscopy. Macromolecules, 2011, 44, 7508-7510.	2.2	23
32	Diffusion of single molecular and macromolecular probes during the free radical bulk polymerization of MMA – towards a better understanding of the Trommsdorff effect on a molecular level. Polymer Chemistry, 2016, 7, 4100-4105.	1.9	22
33	Vast Quantities of Microplastics in Arctic Sea Ice—A Prime Temporary Sink for Plastic Litter and a Medium of Transport. , 2017, , 75-76.		12
34	Human footprints at hadal depths: interlayer and intralayer comparison of sediment cores from the Kuril Kamchatka trench. Science of the Total Environment, 2022, 838, 156035.	3.9	8
35	7â€Azacinnolinâ€4(1 <i>H</i>)â€one preparation and NMR studies of tautomery. Journal of Heterocyclic Chemistry, 2011, 48, 737-741.	1.4	6
36	Paraffin and other petroleum waxes in the southern North Sea. Marine Pollution Bulletin, 2021, 162, 111807.	2.3	5

#	Article	IF	CITATIONS
37	Modeling of Catalyzed Chain Growth (CCG) Polymerization of Styrene-d 8 using Cp*2 ZrCl2 and Dibenzylmagnesium. Macromolecular Theory and Simulations, 2015, 24, 232-247.	0.6	3
38	A Kinetic Investigation of the Initialization of Catalyzed Chain Growth of Styrene: The Reaction of Cp* ₂ ZrCl ₂ with DibenzyImagnesium. Macromolecular Chemistry and Physics, 2014, 215, 544-554.	1.1	2
39	Using the FlowCam to Validate an Enzymatic Digestion Protocol Applied to Assess the Occurrence of Microplastics in the Southern North Sea. , 2017, , 92-93.		1
40	Automated Analysis of µFTIR Imaging Data for Microplastic Samples. , 2017, , 90-91.		0