
## Pierrick Gj Fournier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1260997/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Research, 2002, 62, 6538-44.         | 0.9  | 421       |
| 2  | Molecular Biology of Bone Metastasis. Molecular Cancer Therapeutics, 2007, 6, 2609-2617.                                                                                           | 4.1  | 405       |
| 3  | Bisphosphonates and Cancer-Induced Bone Disease: Beyond Their Antiresorptive Activity: Figure 1<br>Cancer Research, 2005, 65, 4971-4974.                                           | 0.9  | 217       |
| 4  | TGF-β-RI Kinase Inhibitor SD-208 Reduces the Development and Progression of Melanoma Bone<br>Metastases. Cancer Research, 2011, 71, 175-184.                                       | 0.9  | 203       |
| 5  | Hypoxia and TGF-Î <sup>2</sup> Drive Breast Cancer Bone Metastases through Parallel Signaling Pathways in Tumor<br>Cells and the Bone Microenvironment. PLoS ONE, 2009, 4, e6896.  | 2.5  | 189       |
| 6  | Stable Overexpression of Smad7 in Human Melanoma Cells Impairs Bone Metastasis. Cancer Research, 2007, 67, 2317-2324.                                                              | 0.9  | 187       |
| 7  | The TGF-β Signaling Regulator PMEPA1 Suppresses Prostate Cancer Metastases to Bone. Cancer Cell, 2015, 27, 809-821.                                                                | 16.8 | 169       |
| 8  | GLI2-Mediated Melanoma Invasion and Metastasis. Journal of the National Cancer Institute, 2010, 102, 1148-1159.                                                                    | 6.3  | 149       |
| 9  | Angiostatin Inhibits Bone Metastasis Formation in Nude Mice through a Direct Anti-osteoclastic<br>Activity. Journal of Biological Chemistry, 2003, 278, 45826-45832.               | 3.4  | 81        |
| 10 | Nitrogen-containing bisphosphonates can inhibit angiogenesis in vivo without the involvement of farnesyl pyrophosphate synthase. Bone, 2011, 48, 259-266.                          | 2.9  | 81        |
| 11 | In Vitro and In Vivo Antitumor Effects of Bisphosphonates. Current Medicinal Chemistry, 2003, 10, 173-180.                                                                         | 2.4  | 80        |
| 12 | Halofuginone Inhibits the Establishment and Progression of Melanoma Bone Metastases. Cancer<br>Research, 2012, 72, 6247-6256.                                                      | 0.9  | 66        |
| 13 | How Do Bisphosphonates Inhibit Bone Metastasis In Vivo. Neoplasia, 2010, 12, 571-578.                                                                                              | 5.3  | 59        |
| 14 | New insights into the role of T cells in the vicious cycle of bone metastases. Current Opinion in<br>Rheumatology, 2006, 18, 396-404.                                              | 4.3  | 52        |
| 15 | Lowering Bone Mineral Affinity of Bisphosphonates as a Therapeutic Strategy to Optimize Skeletal<br>Tumor Growth Inhibition <i>In vivo</i> . Cancer Research, 2008, 68, 8945-8953. | 0.9  | 42        |
| 16 | FGF23 is elevated in multiple myeloma and increases heparanase expression by tumor cells. Oncotarget, 2015, 6, 19647-19660.                                                        | 1.8  | 38        |
| 17 | Halofuginone inhibits TGF-β/BMP signaling and in combination with zoledronic acid enhances inhibition of breast cancer bone metastasis. Oncotarget, 2017, 8, 86447-86462.          | 1.8  | 35        |
| 18 | Brome mosaic virus-like particles as siRNA nanocarriers for biomedical purposes. Beilstein Journal of<br>Nanotechnology, 2020, 11, 372-382.                                        | 2.8  | 34        |

PIERRICK GJ FOURNIER

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Functionalized rare earth-doped nanoparticles for breast cancer nanodiagnostic using fluorescence<br>and CT imaging. Journal of Nanobiotechnology, 2018, 16, 26.                                                                | 9.1 | 32        |
| 20 | Development of a functionalized UV-emitting nanocomposite for the treatment of cancer using indirect photodynamic therapy. Journal of Nanobiotechnology, 2018, 16, 19.                                                          | 9.1 | 31        |
| 21 | The vitamin D receptor is involved in the regulation of human breast cancer cell growth via a<br>ligand-independent function in cytoplasm. Oncotarget, 2017, 8, 26687-26701.                                                    | 1.8 | 22        |
| 22 | Contribution of Macrophages and T Cells in Skeletal Metastasis. Cancers, 2020, 12, 1014.                                                                                                                                        | 3.7 | 19        |
| 23 | TGFβ-Mediated induction of SphK1 as a potential determinant in human MDA-MB-231 breast cancer cell bone metastasis. BoneKEy Reports, 2015, 4, 719.                                                                              | 2.7 | 17        |
| 24 | Bone Microenvironment-Suppressed T Cells Increase Osteoclast Formation and Osteolytic Bone<br>Metastases in Mice. Journal of Bone and Mineral Research, 2020, 37, 1446-1463.                                                    | 2.8 | 11        |
| 25 | TIE2 Induces Breast Cancer Cell Dormancy and Inhibits the Development of Osteolytic Bone<br>Metastases. Cancers, 2020, 12, 868.                                                                                                 | 3.7 | 9         |
| 26 | BMP7: A New Bone Metastases Prevention?. American Journal of Pathology, 2007, 171, 739-743.                                                                                                                                     | 3.8 | 5         |
| 27 | Agents Targeting Prostate Cancer Bone Metastasis. Anti-Cancer Agents in Medicinal Chemistry, 2009, 9,<br>1079-1088.                                                                                                             | 1.7 | 5         |
| 28 | <i>In silico-designed</i> mutations increase variable new-antigen receptor single-domain antibodies for VEGF165 neutralization. Oncotarget, 2018, 9, 28016-28029.                                                               | 1.8 | 4         |
| 29 | P48. Transforming growth factor $\hat{I}^2$ receptor I kinase inhibitor and bisphosphonates are additive to reduce breast cancer bone metastases. Cancer Treatment Reviews, 2008, 34, 37-38.                                    | 7.7 | 1         |
| 30 | Tumor-Bone Cell Interactions in Bone Metastases. , 2010, , 9-40.                                                                                                                                                                |     | 1         |
| 31 | P16. Hypoxia and breast cancer bone metastasis: HIF-1α enhances TGF-β signaling and expression of prometastatic factors CXCR4 and VEGF. Cancer Treatment Reviews, 2008, 34, 18.                                                 | 7.7 | Ο         |
| 32 | P32. Transforming growth factor-β (TGF-β) promotes prostate cancer bone metastases: Increased<br>expression of pro-osteolytic genes and of PMEPA1, a new TGF-β signalling regulator. Cancer Treatment<br>Reviews, 2008, 34, 25. | 7.7 | 0         |
| 33 | P57. Manipulating the bone mineral affinity of bisphosphonates to directly target cancer cells in the bone marrow. Cancer Treatment Reviews, 2008, 34, 42.                                                                      | 7.7 | 0         |
| 34 | Correction: TGF-β-RI Kinase Inhibitor SD-208 Reduces the Development and Progression of Melanoma<br>Bone Metastases. Cancer Research, 2011, 71, 2023-2023.                                                                      | 0.9 | 0         |
| 35 | Tumor–bone interactions: there is no place like bone. , 2015, , 13-28.                                                                                                                                                          |     | Ο         |
| 36 | Transforming growth factor-Î <sup>2</sup> and its signaling pathway in skeletal complications of malignancy. ,<br>2022, , 253-273.                                                                                              |     | 0         |

| 37 TGF-Î <sup>2</sup> and BMP Signaling Pathways in Cancer and Bone: In Sickness and in Health. , 2020, , 281-293. O | #  | Article                                                                                            | IF | CITATIONS |
|----------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------|----|-----------|
|                                                                                                                      | 37 | TGF-β and BMP Signaling Pathways in Cancer and Bone: In Sickness and in Health. , 2020, , 281-293. |    | 0         |