Weihua Song

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1260985/weihua-song-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

103
papers5,844
citations43
h-index75
g-index104
ext. papers6,971
ext. citations9.8
avg, IF5.99
L-index

#	Paper	IF	Citations
103	Photosensitized Transformation of Peroxymonosulfate in Dissolved Organic Matter Solutions under Simulated Solar Irradiation <i>Environmental Science & Environmental Science &</i>	10.3	3
102	Abatement of Structurally Diverse Micropollutants by the UV/Permanganate Process: Roles of Hydroxyl Radicals and Reactive Manganese Species. <i>ACS ES&T Water</i> , 2022 , 2, 593-603		О
101	Determination of trace organic contaminants by a novel mixed-mode online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry <i>Environmental Pollution</i> , 2022 , 119112	9.3	1
100	Non-targeted analysis for organic components of microplastic leachates. <i>Science of the Total Environment</i> , 2021 , 816, 151598	10.2	О
99	Photochemical Formation of Methylhydroperoxide in Dissolved Organic Matter Solutions. <i>Environmental Science & Discourse Matter Solutions</i> .	10.3	3
98	Chemical Fingerprinting of HULIS in Particulate Matters Emitted from Residential Coal and Biomass Combustion. <i>Environmental Science & Emp; Technology</i> , 2021 , 55, 3593-3603	10.3	13
97	Mechanistic insight into superoxide radical-mediated degradation of carbon tetrachloride in aqueous solution: An in situ spectroscopic and computational study. <i>Chemical Engineering Journal</i> , 2021 , 410, 128181	14.7	27
96	Microheterogeneous Distribution of Hydroxyl Radicals in Illuminated Dissolved Organic Matter Solutions. <i>Environmental Science & Environmental Science</i>	10.3	4
95	Occurrence, distribution, and potential health risks of psychoactive substances in Chinese surface waters. <i>Journal of Hazardous Materials</i> , 2021 , 407, 124851	12.8	4
94	Reevaluation of the contributions of reactive intermediates to the photochemical transformation of 17Eestradiol in sewage effluent. <i>Water Research</i> , 2021 , 189, 116633	12.5	3
93	Comprehensive Understanding of the Phototransformation Process of Macrolide Antibiotics in Simulated Natural Waters. <i>ACS ES&T Water</i> , 2021 , 1, 938-948		3
92	Phototransformation of an emerging cyanotoxin (Aerucyclamide A) in simulated natural waters. <i>Water Research</i> , 2021 , 201, 117339	12.5	2
91	Kinetic Consideration of Photochemical Formation and Decay of Superoxide Radical in Dissolved Organic Matter Solutions. <i>Environmental Science & Environmental Science & Envir</i>	10.3	25
90	Preparation of mesoporous anatase titania with large secondary mesopores and extraordinarily high photocatalytic performances. <i>Applied Catalysis B: Environmental</i> , 2020 , 269, 118756	21.8	11
89	Triplet Photochemistry of Dissolved Black Carbon and Its Effects on the Photochemical Formation of Reactive Oxygen Species. <i>Environmental Science & Environmental Science & E</i>	10.3	24
88	Overview of the Phototransformation of Wastewater Effluents by High-Resolution Mass Spectrometry. <i>Environmental Science & Environmental Science & Env</i>	10.3	17
87	Carbonate Radical Oxidation of Cylindrospermopsin (Cyanotoxin): Kinetic Studies and Mechanistic Consideration. <i>Environmental Science & Environmental </i>	10.3	13

(2018-2020)

86	Development of fluorescence surrogates to predict the ferrate(VI) oxidation of pharmaceuticals in wastewater effluents. <i>Water Research</i> , 2020 , 185, 116256	12.5	7
85	Conventional Disinfection and/or Oxidation Processes for the Destruction of Cyanotoxins/Cyanobacteria 2020 , 155-171		
84	Assessing the contribution of hydroxylation species in the photochemical transformation of primidone (pharmaceutical). <i>Science of the Total Environment</i> , 2019 , 696, 133826	10.2	6
83	Photolysis of graphene oxide in the presence of nitrate: implications for graphene oxide integrity in water and wastewater treatment. <i>Environmental Science: Nano</i> , 2019 , 6, 136-145	7.1	8
82	Mesoporous anatase crystal-silica nanocomposites with large intrawall mesopores presenting quite excellent photocatalytic performances. <i>Applied Catalysis B: Environmental</i> , 2019 , 246, 284-295	21.8	16
81	Photochemical oxidation of PPCPs using a combination of solar irradiation and free available chlorine. <i>Science of the Total Environment</i> , 2019 , 682, 629-638	10.2	26
80	Photochemical formation of carbonate radical and its reaction with dissolved organic matters. Water Research, 2019 , 161, 288-296	12.5	38
79	Effects of ozone and produced hydroxyl radicals on the transformation of graphene oxide in aqueous media. <i>Environmental Science: Nano</i> , 2019 , 6, 2484-2494	7.1	13
78	Development of an ammonium chloride-enhanced thermal-assisted-ESI LC-HRMS method for the characterization of chlorinated paraffins. <i>Environmental Pollution</i> , 2019 , 255, 113303	9.3	7
77	Triplet-State Photochemistry of Dissolved Organic Matter: Triplet-State Energy Distribution and Surface Electric Charge Conditions. <i>Environmental Science & Electric Charge Conditions</i> . <i>Environmental Science & Electric Charge Conditions</i> . <i>Environmental Science & Electric Charge Conditions</i> .	10.3	64
76	Kinetics studies and mechanistic considerations on the reactions of superoxide radical ions with dissolved organic matter. <i>Water Research</i> , 2019 , 149, 56-64	12.5	32
75	The Multiple Role of Bromide Ion in PPCPs Degradation under UV/Chlorine Treatment. <i>Environmental Science & Environmental Scie</i>	10.3	92
74	Particle size distribution and respiratory deposition estimates of airborne perfluoroalkyl acids during the haze period in the megacity of Shanghai. <i>Environmental Pollution</i> , 2018 , 234, 9-19	9.3	22
73	Occurrence and indicators of pharmaceuticals in Chinese streams: A nationwide study. <i>Environmental Pollution</i> , 2018 , 236, 889-898	9.3	57
72	Comparison of the UV/chlorine and UV/HO processes in the degradation of PPCPs in simulated drinking water and wastewater: Kinetics, radical mechanism and energy requirements. <i>Water Research</i> , 2018 , 147, 184-194	12.5	147
71	Photoreactivity of graphene oxide in aqueous system: Reactive oxygen species formation and bisphenol A degradation. <i>Chemosphere</i> , 2018 , 195, 344-350	8.4	27
70	Facet-dependent generation of superoxide radical anions by ZnO nanomaterials under simulated solar light. <i>Environmental Science: Nano</i> , 2018 , 5, 2864-2875	7.1	17
69	Occurrence and estrogenic activity of steroid hormones in Chinese streams: A nationwide study based on a combination of chemical and biological tools. <i>Environment International</i> , 2018 , 118, 1-8	12.9	42

68	Mechanistic consideration of the photochemical transformation of domoic acid (algal toxin) in DOM-Rich brackish water. <i>Chemosphere</i> , 2018 , 209, 328-337	8.4	6
67	Kinetic Study of Hydroxyl and Sulfate Radical-Mediated Oxidation of Pharmaceuticals in Wastewater Effluents. <i>Environmental Science & Environmental Sc</i>	10.3	195
66	Ligand-Promoted Photoreductive Dissolution of Goethite by Atmospheric Low-Molecular Dicarboxylates. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 1647-1656	2.8	16
65	Insights into the photo-induced formation of reactive intermediates from effluent organic matter: The role of chemical constituents. <i>Water Research</i> , 2017 , 112, 120-128	12.5	66
64	Development of Fluorescence Surrogates to Predict the Photochemical Transformation of Pharmaceuticals in Wastewater Effluents. <i>Environmental Science & Environmental Science </i>	7 ^{10.3}	36
63	Three-dimensional interconnected mesoporous anatase TiO2 exhibiting unique photocatalytic performances. <i>Applied Catalysis B: Environmental</i> , 2017 , 217, 293-302	21.8	37
62	UV/chlorine treatment of carbamazepine: Transformation products and their formation kinetics. <i>Water Research</i> , 2017 , 116, 254-265	12.5	81
61	Photochemical Transformation of Nicotine in Wastewater Effluent. <i>Environmental Science & Emp;</i> Technology, 2017 , 51, 11718-11730	10.3	28
60	Development of Novel Chemical Probes for Examining Triplet Natural Organic Matter under Solar Illumination. <i>Environmental Science & Environmental Sci</i>	10.3	28
59	Radical Chemistry and Structural Relationships of PPCP Degradation by UV/Chlorine Treatment in Simulated Drinking Water. <i>Environmental Science & Environmental Science & Envi</i>	10.3	271
58	Photosensitized degradation of acetaminophen in natural organic matter solutions: The role of triplet states and oxygen. <i>Water Research</i> , 2017 , 109, 266-273	12.5	70
57	Tin porphyrin immobilization significantly enhances visible-light-photosensitized degradation of Microcystins: Mechanistic implications. <i>Applied Catalysis B: Environmental</i> , 2016 , 199, 33-44	21.8	10
56	Ozonation of Cylindrospermopsin (Cyanotoxin): Degradation Mechanisms and Cytotoxicity Assessments. <i>Environmental Science & Environmental Science & En</i>	10.3	26
55	Photochemical Transformation of Aminoglycoside Antibiotics in Simulated Natural Waters. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	63
54	Determination of illicit drugs in aqueous environmental samples by online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry. <i>Chemosphere</i> , 2016 , 160, 208-15	8.4	26
53	Effects of C on the Photochemical Formation of Reactive Oxygen Species from Natural Organic Matter. <i>Environmental Science & Eamp; Technology</i> , 2016 , 50, 11742-11751	10.3	18
52	Photocatalytic degradation of three amantadine antiviral drugs as well as their eco-toxicity evolution. <i>Catalysis Today</i> , 2015 , 258, 602-609	5.3	9
51	Experimental and theoretical studies on aqueous-phase reactivity of hydroxyl radicals with multiple carboxylated and hydroxylated benzene compounds. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 1179	9 3 -812	. 22

(2012-2015)

50	Photocatalytic degradation and mineralization mechanism and toxicity assessment of antivirus drug acyclovir: Experimental and theoretical studies. <i>Applied Catalysis B: Environmental</i> , 2015 , 164, 279	-287 ⁸	70
49	The roles of halides in the acetaminophen degradation by UV/H2O2 treatment: Kinetics, mechanisms, and products analysis. <i>Chemical Engineering Journal</i> , 2015 , 271, 214-222	14.7	60
48	Enhancement of the advanced Fenton process by weak magnetic field for the degradation of 4-nitrophenol. <i>RSC Advances</i> , 2015 , 5, 13357-13365	3.7	37
47	Seasonal and diurnal variations of particulate organosulfates in urban Shanghai, China. <i>Atmospheric Environment</i> , 2014 , 85, 152-160	5.3	72
46	Photo-transformation of pharmaceutically active compounds in the aqueous environment: a review. <i>Environmental Sciences: Processes and Impacts</i> , 2014 , 16, 697-720	4.3	122
45	Photochemically induced formation of reactive oxygen species (ROS) from effluent organic matter. <i>Environmental Science & Environmental Science & Envi</i>	10.3	184
44	Mechanistic considerations of photosensitized transformation of microcystin-LR (cyanobacterial toxin) in aqueous environments. <i>Environmental Pollution</i> , 2014 , 193, 111-118	9.3	24
43	Removal of emerging pollutants by Ru/TiO2-catalyzed permanganate oxidation. <i>Water Research</i> , 2014 , 63, 262-70	12.5	42
42	Transformation Products of Hazardous Cyanobacterial Metabolites in Water 2014 , 675-708		1
41	Free radical destruction of haloacetamides in aqueous solution. <i>Water Science and Technology:</i> Water Supply, 2014 , 14, 212-219	1.4	8
40	Photochemical transformation of terbutaline (pharmaceutical) in simulated natural waters: degradation kinetics and mechanisms. <i>Water Research</i> , 2013 , 47, 6558-65	12.5	35
39	Radiation chemistry of salicylic and methyl substituted salicylic acids: Models for the radiation chemistry of pharmaceutical compounds. <i>Radiation Physics and Chemistry</i> , 2013 , 92, 93-98	2.5	11
38	Degradation of diclofenac by advanced oxidation and reduction processes: kinetic studies, degradation pathways and toxicity assessments. <i>Water Research</i> , 2013 , 47, 1909-18	12.5	208
37	Photochemical fate of beta-blockers in NOM enriched waters. <i>Science of the Total Environment</i> , 2012 , 426, 289-95	10.2	48
36	Advanced oxidation treatment and photochemical fate of selected antidepressant pharmaceuticals in solutions of Suwannee River humic acid. <i>Journal of Hazardous Materials</i> , 2012 , 217-218, 382-90	12.8	53
35	Recent advances in structure and reactivity of dissolved organic matter: radiation chemistry of non-isolated natural organic matter and selected model compounds. <i>Water Science and Technology</i> , 2012 , 66, 1941-9	2.2	8
34	Destruction of microcystins by conventional and advanced oxidation processes: A review. <i>Separation and Purification Technology</i> , 2012 , 91, 3-17	8.3	156
33	Trimethoprim: kinetic and mechanistic considerations in photochemical environmental fate and AOP treatment. <i>Water Research</i> , 2012 , 46, 1327-36	12.5	87

32	Hydroxyl radical oxidation of cylindrospermopsin (cyanobacterial toxin) and its role in the photochemical transformation. <i>Environmental Science & Environmental Science & Env</i>	10.3	79
31	Photochemical fate of atorvastatin (lipitor) in simulated natural waters. Water Research, 2011, 45, 625-	31 2.5	58
30	Photosensitized degradation of amoxicillin in natural organic matter isolate solutions. <i>Water Research</i> , 2011 , 45, 632-8	12.5	185
29	Molecular characterization of effluent organic matter identified by ultrahigh resolution mass spectrometry. <i>Water Research</i> , 2011 , 45, 2943-53	12.5	161
28	Removal of pharmaceutical and personal care products from reverse osmosis retentate using advanced oxidation processes. <i>Environmental Science & Environmental Science & Envir</i>	10.3	119
27	Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions: experimental and theoretical studies. <i>Environmental Science & Environmental Science & Envir</i>	10.3	32
26	Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms. <i>Radiation Physics and Chemistry</i> , 2011 , 80, 453-461	2.5	15
25	Can we effectively degrade microcystins?Implications on human health. <i>Anti-Cancer Agents in Medicinal Chemistry</i> , 2011 , 11, 19-37	2.2	59
24	Stability of water-stable C60 clusters to OH radical oxidation and hydrated electron reduction. <i>Environmental Science & Environmental Science & Envir</i>	10.3	27
23	Mechanistic considerations for the advanced oxidation treatment of fluoroquinolone pharmaceutical compounds using TiO(2) heterogeneous catalysis. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 2569-75	2.8	140
22	Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes. <i>Chemosphere</i> , 2010 , 78, 533-40	8.4	274
21	Degradation mechanisms and kinetic studies for the treatment of X-ray contrast media compounds by advanced oxidation/reduction processes. <i>Water Research</i> , 2010 , 44, 4391-8	12.5	103
20	Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: a case of beta-blockers. <i>Journal of Hazardous Materials</i> , 2010 , 179, 834-9	12.8	153
19	Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water. <i>Applied Catalysis B: Environmental</i> , 2010 , 94, 288-294	21.8	369
18	Impact of halides on the photobleaching of dissolved organic matter. <i>Marine Chemistry</i> , 2009 , 115, 134	-1 314	62
17	Radiolysis studies on the destruction of microcystin-LR in aqueous solution by hydroxyl radicals. <i>Environmental Science & amp; Technology</i> , 2009 , 43, 1487-92	10.3	61
16	Free-radical-induced oxidative and reductive degradation of fibrate pharmaceuticals: kinetic studies and degradation mechanisms. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 1287-94	2.8	93
15	Advanced oxidation and reduction process chemistry of methyl tert-butyl ether (MTBE) reaction intermediates in aqueous solution: 2-methoxy-2-methyl-propanal, 2-methoxy-2-methyl-propanol, and 2-methoxy-2-methyl-propanoic acid. <i>Chemosphere</i> , 2009 , 77, 1352-7	8.4	4

LIST OF PUBLICATIONS

1.	Free-radical-induced oxidative and reductive degradation of N,NUdiethyl-m-toluamide (DEET): Kinetic studies and degradation pathway. <i>Water Research</i> , 2009 , 43, 635-42	12.5	67
1	Free-radical-induced oxidative and reductive degradation of fluoroquinolone pharmaceuticals: kinetic studies and degradation mechanism. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 7846-51	2.8	78
1	Free radical destruction of beta-blockers in aqueous solution. <i>Environmental Science & Environmental Science & Technology</i> , 2008 , 42, 1256-61	10.3	156
1:	Free-radical destruction of beta-lactam antibiotics in aqueous solution. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 7411-7	2.8	82
10	Studies in Radiation Chemistry: Application to Ozonation and Other Advanced Oxidation Processes. Ozone: Science and Engineering, 2008, 30, 58-64	2.4	18
9	Recent advances in structure and reactivity of dissolved organic matter in natural waters. <i>Water Science and Technology: Water Supply</i> , 2008 , 8, 615-623	1.4	5
8	Mechanistic study and the influence of oxygen on the photosensitized transformations of microcystins (cyanotoxins). <i>Environmental Science & Environmental Science & Environme</i>	10.3	57
7	Degradation of hexachlorobenzene by electron beam irradiation. <i>Journal of Hazardous Materials</i> , 2007 , 142, 431-6	12.8	21
6	Toxicogenomic evaluation of microcystin-LR treated with ultrasonic irradiation. <i>Toxicology and Applied Pharmacology</i> , 2007 , 220, 357-64	4.6	45
5	Ultrasonically induced degradation of 2-methylisoborneol and geosmin. Water Research, 2007 , 41, 2672	-8 2.5	79
4	Ultrasonically induced degradation of microcystin-LR and -RR: identification of products, effect of pH, formation and destruction of peroxides. <i>Environmental Science & Environmental Science & Envir</i>	10.3	118
3	Ultrasonically induced degradation and detoxification of microcystin-LR (cyanobacterial toxin). <i>Environmental Science & Technology</i> , 2005 , 39, 6300-5	10.3	91
2	Iron(II)-catalyzed enhancement of ultrasonic-induced degradation of diethylstilbestrol (DES). <i>Catalysis Today</i> , 2005 , 101, 369-373	5.3	19
1	Reevaluation of the Reactivity of Superoxide Radicals with a Sulfonamide Antibiotic, Sulfacetamide: An Experimental and Theoretical Study. <i>ACS ES&T Water</i> ,		6