
## Jacek Jemielity

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1260983/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Ethylenediamine derivatives efficiently react with oxidized RNA 3′ ends providing access to mono and dually labelled RNA probes for enzymatic assays and <i>in vivo</i> translation. Nucleic Acids Research, 2022, 50, e3-e3.              | 6.5 | 4         |
| 2  | Fluorinated Phosphoadenosine 5â€2-Phosphosulfate Analogues for Continuous Sulfotransferase<br>Activity Monitoring and Inhibitor Screening by <sup>19</sup> F NMR Spectroscopy. ACS Chemical<br>Biology, 2022, 17, 661-669.                 | 1.6 | 2         |
| 3  | Structure of the poxvirus decapping enzyme D9 reveals its mechanism of cap recognition and catalysis. Structure, 2022, 30, 721-732.e4.                                                                                                     | 1.6 | 8         |
| 4  | Substrate-Based Design of Cytosolic Nucleotidase IIIB Inhibitors and Structural Insights into<br>Inhibition Mechanism. Pharmaceuticals, 2022, 15, 554.                                                                                     | 1.7 | 1         |
| 5  | Fluorescence-Based Activity Screening Assay Reveals Small Molecule Inhibitors of Vaccinia Virus mRNA<br>Decapping Enzyme D9. ACS Chemical Biology, 2022, 17, 1460-1471.                                                                    | 1.6 | 3         |
| 6  | Chemically Modified Poly(A) Analogs Targeting PABP: Structure Activity Relationship and Translation<br>Inhibitory Properties. Chemistry - A European Journal, 2022, 28, .                                                                  | 1.7 | 3         |
| 7  | Introducing SuFNucs: Sulfamoyl-Fluoride-Functionalized Nucleosides That Undergo Sulfur Fluoride<br>Exchange Reaction. Organic Letters, 2022, 24, 4977-4981.                                                                                | 2.4 | 4         |
| 8  | Structural Insights into the Interaction of Clinically Relevant Phosphorothioate mRNA Cap Analogs<br>with Translation Initiation Factor 4E Reveal Stabilization via Electrostatic Thio-Effect. ACS Chemical<br>Biology, 2021, 16, 334-343. | 1.6 | 16        |
| 9  | Cellular delivery of dinucleotides by conjugation with small molecules: targeting translation initiation for anticancer applications. Chemical Science, 2021, 12, 10242-10251.                                                             | 3.7 | 6         |
| 10 | The Strategies to Support the COVID-19 Vaccination with Evidence-Based Communication and Tackling Misinformation. Vaccines, 2021, 9, 109.                                                                                                  | 2.1 | 97        |
| 11 | Biomolecular condensates amplify mRNA decapping by biasing enzyme conformation. Nature Chemical<br>Biology, 2021, 17, 615-623.                                                                                                             | 3.9 | 49        |
| 12 | Evaluation of carboxyfluorescein-labeled 7-methylguanine nucleotides as probes for studying cap-binding proteins by fluorescence anisotropy. Scientific Reports, 2021, 11, 7687.                                                           | 1.6 | 5         |
| 13 | Upregulation of RNA cap methyltransferase RNMT drives ribosome biogenesis during T cell activation.<br>Nucleic Acids Research, 2021, 49, 6722-6738.                                                                                        | 6.5 | 29        |
| 14 | RNA Ligation for Mono and Dually Labeled RNAs. Chemistry - A European Journal, 2021, 27, 12190-12197.                                                                                                                                      | 1.7 | 6         |
| 15 | Nucleotide-decorated AuNPs as probes for nucleotide-binding proteins. Scientific Reports, 2021, 11, 15741.                                                                                                                                 | 1.6 | 2         |
| 16 | Enzymatic Assays to Explore Viral mRNA Capping Machinery. ChemBioChem, 2021, 22, 3236-3253.                                                                                                                                                | 1.3 | 10        |
| 17 | Identification and evaluation of potential SARS-CoV-2 antiviral agents targeting mRNA cap guanine<br>N7-Methyltransferase. Antiviral Research, 2021, 193, 105142.                                                                          | 1.9 | 19        |
| 18 | Novel N7-Arylmethyl Substituted Dinucleotide mRNA 5′ cap Analogs: Synthesis and Evaluation as<br>Modulators of Translation. Pharmaceutics. 2021. 13. 1941.                                                                                 | 2.0 | 11        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Kinetic analysis of IFIT1 and IFIT5 interactions with different native and engineered RNAs and its consequences for designing mRNA-based therapeutics. Rna, 2020, 26, 58-68.                                               | 1.6 | 11        |
| 20 | Solidâ€Phase Synthesis of RNA 5′â€Azides and Their Application for Labeling, Ligation, and Cyclization Via<br>Click Chemistry. Current Protocols in Nucleic Acid Chemistry, 2020, 82, e112.                                | 0.5 | 6         |
| 21 | Phosphodiester modifications in mRNA poly(A) tail prevent deadenylation without compromising protein expression. Rna, 2020, 26, 1815-1837.                                                                                 | 1.6 | 33        |
| 22 | Efficient Synthesis of Trifluoromethylated Purine Ribonucleosides and Ribonucleotides. Current<br>Protocols in Nucleic Acid Chemistry, 2020, 83, e118.                                                                     | 0.5 | 3         |
| 23 | 5′-fluoro(di)phosphate-labeled oligonucleotides are versatile molecular probes for studying nucleic<br>acid secondary structure and interactions by 19F NMR. Nucleic Acids Research, 2020, 48, 8209-8224.                  | 6.5 | 14        |
| 24 | The identity and methylation status of the first transcribed nucleotide in eukaryotic mRNA 5′ cap<br>modulates protein expression in living cells. Nucleic Acids Research, 2020, 48, 1607-1626.                            | 6.5 | 76        |
| 25 | Synthesis of Trifluoromethylated Purine Ribonucleotides and Their Evaluation as 19F NMR Probes.<br>Journal of Organic Chemistry, 2020, 85, 3440-3453.                                                                      | 1.7 | 18        |
| 26 | Direct Highâ€Throughput Screening Assay for mRNA Cap Guanineâ€N7 Methyltransferase Activity.<br>Chemistry - A European Journal, 2020, 26, 11266-11275.                                                                     | 1.7 | 6         |
| 27 | Exploring tryptamine conjugates as pronucleotides of phosphate-modified 7-methylguanine<br>nucleotides targeting cap-dependent translation. Bioorganic and Medicinal Chemistry, 2020, 28, 115523.                          | 1.4 | 5         |
| 28 | N1-Propargylguanosine Modified mRNA Cap Analogs: Synthesis, Reactivity, and Applications to the<br>Study of Cap-Binding Proteins. Molecules, 2019, 24, 1899.                                                               | 1.7 | 6         |
| 29 | Fluorescent Turnâ€On Probes for the Development of Binding and Hydrolytic Activity Assays for mRNA<br>Capâ€Recognizing Proteins. Chemistry - A European Journal, 2019, 25, 6728-6740.                                      | 1.7 | 10        |
| 30 | 5′-Phosphorothiolate Dinucleotide Cap Analogues: Reagents for Messenger RNA Modification and<br>Potent Small-Molecular Inhibitors of Decapping Enzymes. Journal of the American Chemical Society,<br>2018, 140, 5987-5999. | 6.6 | 61        |
| 31 | Structure of the activated Edc1-Dcp1-Dcp2-Edc3 mRNA decapping complex with substrate analog poised for catalysis. Nature Communications, 2018, 9, 1152.                                                                    | 5.8 | 38        |
| 32 | mRNAs biotinylated within the 5′ cap and protected against decapping: new tools to capture<br>RNA–protein complexes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018,<br>373, 20180167.       | 1.8 | 8         |
| 33 | Nicotinamide-Containing Di- and Trinucleotides as Chemical Tools for Studies of NAD-Capped RNAs.<br>Organic Letters, 2018, 20, 7650-7655.                                                                                  | 2.4 | 17        |
| 34 | Roquin targets mRNAs in a $3\hat{a}\in^2$ -UTR-specific manner by different modes of regulation. Nature Communications, 2018, 9, 3810.                                                                                     | 5.8 | 40        |
| 35 | Exploring the potential of phosphotriazole 5′ mRNA cap analogues as efficient translation initiators.<br>Organic and Biomolecular Chemistry, 2018, 16, 6741-6748.                                                          | 1.5 | 11        |
| 36 | ExciTides: NTP-derived probes for monitoring pyrophosphatase activity based on excimer-to-monomer transitions. Chemical Communications, 2018, 54, 9773-9776.                                                               | 2.2 | 6         |

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Applications of Phosphate Modification and Labeling to Study (m)RNA Caps. Topics in Current<br>Chemistry, 2017, 375, 16.                                                                                                                                | 3.0 | 42        |
| 38 | Central Regulatory Role for SIN1 in Interferon γ (IFNγ) Signaling and Generation of Biological<br>Responses. Journal of Biological Chemistry, 2017, 292, 4743-4752.                                                                                     | 1.6 | 6         |
| 39 | eIF4E phosphorylation by MST1 reduces translation of a subset of mRNAs, but increases lncRNA<br>translation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 761-772.                                                           | 0.9 | 27        |
| 40 | Synthesis of RNA 5′-Azides from 2′- <i>O</i> -Pivaloyloxymethyl-Protected RNAs and Their Reactivity in Azide–Alkyne Cycloaddition Reactions. Organic Letters, 2017, 19, 3624-3627.                                                                      | 2.4 | 11        |
| 41 | Amino-Functionalized 5′ Cap Analogs as Tools for Site-Specific Sequence-Independent Labeling of mRNA.<br>Bioconjugate Chemistry, 2017, 28, 1978-1992.                                                                                                   | 1.8 | 18        |
| 42 | Azidoâ€Functionalized 5′ Cap Analogues for the Preparation of Translationally Active mRNAs Suitable<br>for Fluorescent Labeling in Living Cells. Angewandte Chemie - International Edition, 2017, 56,<br>15628-15632.                                   | 7.2 | 23        |
| 43 | Analysis of mononucleotides by tandem mass spectrometry: investigation of fragmentation pathways for phosphate- and ribose-modified nucleotide analogues. Scientific Reports, 2017, 7, 8931.                                                            | 1.6 | 30        |
| 44 | Azidoâ€Functionalized 5′ Cap Analogues for the Preparation of Translationally Active mRNAs Suitable<br>for Fluorescent Labeling in Living Cells. Angewandte Chemie, 2017, 129, 15834-15838.                                                             | 1.6 | 6         |
| 45 | mRNA cap analogues substituted in the tetraphosphate chain with CX2: identification of O-to-CCl2 as the first bridging modification that confers resistance to decapping without impairing translation.<br>Nucleic Acids Research, 2017, 45, 8661-8675. | 6.5 | 23        |
| 46 | A novel route for preparing 5′ cap mimics and capped RNAs: phosphate-modified cap analogues obtained via click chemistry. Chemical Science, 2017, 8, 260-267.                                                                                           | 3.7 | 32        |
| 47 | Kinetic and solvent isotope effects on biotransformation of aromatic amino acids and their derivatives. Journal of Labelled Compounds and Radiopharmaceuticals, 2016, 59, 627-634.                                                                      | 0.5 | 1         |
| 48 | Synthetic Capped mRNAs for Cap-Specific Photo-Cross-Linking Experiments. Methods in Molecular<br>Biology, 2016, 1428, 31-43.                                                                                                                            | 0.4 | 0         |
| 49 | Synthetic m3G-CAP attachment necessitates a minimum trinucleotide constituent to be recognised as a nuclear import signal. RSC Advances, 2016, 6, 51367-51373.                                                                                          | 1.7 | 8         |
| 50 | Structural basis of mRNA-cap recognition by Dcp1–Dcp2. Nature Structural and Molecular Biology,<br>2016, 23, 987-994.                                                                                                                                   | 3.6 | 45        |
| 51 | Cap analogs modified with 1,2-dithiodiphosphate moiety protect mRNA from decapping and enhance its translational potential. Nucleic Acids Research, 2016, 44, gkw896.                                                                                   | 6.5 | 52        |
| 52 | Two-headed tetraphosphate cap analogs are inhibitors of the Dcp1/2 RNA decapping complex. Rna, 2016, 22, 518-529.                                                                                                                                       | 1.6 | 10        |
| 53 | A fluorescent HTS assay for phosphohydrolases based on nucleoside 5′-fluorophosphates: its<br>application in screening for inhibitors of mRNA decapping scavenger and PDE-I. Organic and<br>Biomolecular Chemistry, 2016, 14, 4595-4604.                | 1.5 | 19        |
| 54 | Interferon γ (IFNγ) Signaling via Mechanistic Target of Rapamycin Complex 2 (mTORC2) and Regulatory<br>Effects in the Generation of Type II Interferon Biological Responses. Journal of Biological Chemistry,<br>2016, 291, 2389-2396.                  | 1.6 | 25        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Clickable trimethylguanosine cap analogs modified within the triphosphate bridge: synthesis, conjugation to RNA and susceptibility to degradation. RSC Advances, 2016, 6, 8317-8328.                                                  | 1.7 | 9         |
| 56 | Acetylpyrene-labelled 7-methylguanine nucleotides: unusual fluorescence properties and application to decapping scavenger activity monitoring. Organic and Biomolecular Chemistry, 2016, 14, 3863-3868.                               | 1.5 | 10        |
| 57 | mRNA Cap Modification through CarbÂamate Chemistry: Synthesis of Amino―and Carboxyâ€Functionalised<br>Cap Analogues Suitable for Labelling and Bioconjugation. European Journal of Organic Chemistry,<br>2015, 2015, 6153-6169.       | 1.2 | 5         |
| 58 | Ethynyl, 2-Propynyl, and 3-Butynyl C-Phosphonate Analogues of Nucleoside Di- and Triphosphates:<br>Synthesis and Reactivity in CuAAC. Organic Letters, 2015, 17, 3062-3065.                                                           | 2.4 | 28        |
| 59 | Synthesis of Fluorophosphate Nucleotide Analogues and Their Characterization as Tools for19F NMR Studies. Journal of Organic Chemistry, 2015, 80, 3982-3997.                                                                          | 1.7 | 35        |
| 60 | Phosphate-modified analogues of m 7 GTP and m 7 Gppppm 7 G—Synthesis and biochemical properties.<br>Bioorganic and Medicinal Chemistry, 2015, 23, 5369-5381.                                                                          | 1.4 | 21        |
| 61 | Gold-decorated polymer vessel structures as carriers of mRNA cap analogs. Polymer, 2015, 57, 77-87.                                                                                                                                   | 1.8 | 6         |
| 62 | Five eIF4E isoforms from Arabidopsis thaliana are characterized by distinct features of cap analogs binding. Biochemical and Biophysical Research Communications, 2015, 456, 47-52.                                                   | 1.0 | 25        |
| 63 | Virus-like particle-mediated intracellular delivery of mRNA cap analog with in vivo activity against<br>hepatocellular carcinoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 67-76.                               | 1.7 | 35        |
| 64 | Synthesis, properties, and biological activity of boranophosphate analogs of the mRNA cap: versatile<br>tools for manipulation of therapeutically relevant cap-dependent processes. Nucleic Acids Research,<br>2014, 42, 10245-10264. | 6.5 | 49        |
| 65 | Towards novel efficient and stable nuclear import signals: synthesis and properties of<br>trimethylguanosine cap analogs modified within the 5′,5′-triphosphate bridge. Organic and<br>Biomolecular Chemistry, 2014, 12, 9184-9199.   | 1.5 | 11        |
| 66 | Cap analogs containing 6-thioguanosine – reagents for the synthesis of mRNAs selectively<br>photo-crosslinkable with cap-binding biomolecules. Organic and Biomolecular Chemistry, 2014, 12,<br>4841-4847.                            | 1.5 | 17        |
| 67 | Magnetic-Nanoparticle-Decorated Polypyrrole Microvessels: Toward Encapsulation of mRNA Cap<br>Analogues. Biomacromolecules, 2013, 14, 1867-1876.                                                                                      | 2.6 | 17        |
| 68 | Synthesis and evaluation of fluorescent cap analogues for mRNA labelling. RSC Advances, 2013, 3, 20943.                                                                                                                               | 1.7 | 24        |
| 69 | Analysis of decapping scavenger cap complex using modified cap analogs reveals molecular determinants for efficient cap binding. FEBS Journal, 2013, 280, 6508-6527.                                                                  | 2.2 | 15        |
| 70 | mRNAs containing the histone 3′ stem–loop are degraded primarily by decapping mediated by<br>oligouridylation of the 3′ end. Rna, 2013, 19, 1-16.                                                                                     | 1.6 | 46        |
| 71 | The synthesis of isopropylidene mRNA cap analogs modified with phosphorothioate moiety and their evaluation as promoters of mRNA translation. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3753-3758.                        | 1.0 | 25        |
| 72 | Synthesis and evaluation of stability of m3C-CAP analogues in serum-supplemented medium and cytosolic extract. Bioorganic and Medicinal Chemistry, 2013, 21, 7921-7928.                                                               | 1.4 | 10        |

| #  | Article                                                                                                                                                                                                                                | IF                | CITATIONS   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|
| 73 | Synthetic mRNAs with Superior Translation and Stability Properties. Methods in Molecular Biology, 2013, 969, 55-72.                                                                                                                    | 0.4               | 44          |
| 74 | Efficient and Rapid Synthesis of Nucleoside Diphosphate Sugars from Nucleoside<br>Phosphorimidazolides. European Journal of Organic Chemistry, 2013, 2013, 2147-2154.                                                                  | 1.2               | 20          |
| 75 | Potential therapeutic applications of RNA cap analogs. Future Medicinal Chemistry, 2013, 5, 1141-1172.                                                                                                                                 | 1.1               | 62          |
| 76 | Affinity resins containing enzymatically resistant mRNA cap analogs—a new tool for the analysis of cap-binding proteins. Rna, 2012, 18, 1421-1432.                                                                                     | 1.6               | 12          |
| 77 | Preparation of Synthetically Challenging Nucleotides Using Cyanoethyl P-Imidazolides and Microwaves. Organic Letters, 2012, 14, 4782-4785.                                                                                             | 2.4               | 45          |
| 78 | Synthesis of biotin labelled cap analogue – incorporable into mRNA transcripts and promoting cap-dependent translation. Organic and Biomolecular Chemistry, 2012, 10, 8570.                                                            | 1.5               | 22          |
| 79 | 7-Methylguanosine Diphosphate (m <sup>7</sup> GDP) Is Not Hydrolyzed but Strongly Bound by<br>Decapping Scavenger (DcpS) Enzymes and Potently Inhibits Their Activity. Biochemistry, 2012, 51,<br>8003-8013.                           | 1.2               | 32          |
| 80 | Synthesis and properties of mRNA cap analogs containing imidodiphosphate moiety—fairly mimicking<br>natural cap structure, yet resistant to enzymatic hydrolysis. Bioorganic and Medicinal Chemistry,<br>2012, 20, 1699-1710.          | 1.4               | 52          |
| 81 | Synthesis of nucleoside phosphosulfates. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3661-3664.                                                                                                                              | 1.0               | 19          |
| 82 | Structural analysis of 5′â€mRNA–cap interactions with the human AGO2 MID domain. EMBO Reports, 2011, 12, 415-420.                                                                                                                      | 2.0               | 35          |
| 83 | Translation, stability, and resistance to decapping of mRNAs containing caps substituted in the triphosphate chain with BH <sub>3</sub> , Se, and NH. Rna, 2011, 17, 978-988.                                                          | 1.6               | 32          |
| 84 | Plant nucleoside 5'-phosphoramidate hydrolase; simple purification from yellow lupin (Lupinus) Tj ETQqO 0 0 rgBT                                                                                                                       | /8.3erlock        | 10 Tf 50 30 |
| 85 | Plant nucleoside 5'-phosphoramidate hydrolase; simple purification from yellow lupin (Lupinus) Tj ETQq1 1 0.7843                                                                                                                       | 14 rgBT /0<br>0.3 | Oyerlock 10 |
| 86 | Dual activity of certain HITâ€proteins: <i>A. thaliana</i> Hint4 and <i>C. elegans</i> DcpS act on<br>adenosine 5′â€phosphosulfate as hydrolases (forming AMP) and as phosphorylases (forming ADP). FEBS<br>Letters, 2010, 584, 93-98. | 1.3               | 20          |
| 87 | Structural requirements for <i>Caenorhabditis elegans</i> DcpS substrates based on fluorescence<br>and HPLC enzyme kinetic studies. FEBS Journal, 2010, 277, 3003-3013.                                                                | 2.2               | 14          |
| 88 | Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Therapy, 2010, 17, 961-971.                                | 2.3               | 186         |
| 89 | Synthetic mRNA cap analogs with a modified triphosphate bridge – synthesis, applications and prospects. New Journal of Chemistry, 2010, 34, 829.                                                                                       | 1.4               | 71          |
| 90 | Towards mRNA with superior translational activity: synthesis and properties of ARCA tetraphosphates with single phosphorothioate modifications. New Journal of Chemistry, 2010, 34, 993.                                               | 1.4               | 35          |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Recognition of different nucleotidyl-derivatives as substrates of reactions catalyzed by various<br>HIT-proteins. New Journal of Chemistry, 2010, 34, 888.                                                                    | 1.4 | 32        |
| 92  | Identification of the HIT-45 protein from <i>Trypanosoma brucei</i> as an FHIT protein/dinucleoside<br>triphosphatase: Substrate specificity studies on the recombinant and endogenous proteins. Rna, 2009,<br>15, 1554-1564. | 1.6 | 14        |
| 93  | Phosphoroselenoate Dinucleotides for Modification of mRNA $5\hat{a}\in^2$ End. ChemBioChem, 2009, 10, 2469-2473.                                                                                                              | 1.3 | 23        |
| 94  | Phosphorothioate analogs of m7GTP are enzymatically stable inhibitors of cap-dependent translation.<br>Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1921-1925.                                                       | 1.0 | 35        |
| 95  | Drosophila miR2 Primarily Targets the m7GpppN Cap Structure for Translational Repression.<br>Molecular Cell, 2009, 35, 881-888.                                                                                               | 4.5 | 74        |
| 96  | Synthetic dinucleotide mRNA cap analogs with tetraphosphate 5′,5′ bridge containing<br>methylenebis(phosphonate) modification. Organic and Biomolecular Chemistry, 2009, 7, 4763.                                             | 1.5 | 50        |
| 97  | Decapping of mRNA containing the histone 3′â€stem loop requires recruitment of stem loop binding protein (SLBP). FASEB Journal, 2009, 23, .                                                                                   | 0.2 | Ο         |
| 98  | mRNA Decapping Is Promoted by an RNA-Binding Channel in Dcp2. Molecular Cell, 2008, 29, 324-336.                                                                                                                              | 4.5 | 99        |
| 99  | The first examples of mRNA cap analogs bearing boranophosphate modification. Nucleic Acids Symposium Series, 2008, 52, 289-290.                                                                                               | 0.3 | 7         |
| 100 | Synthesis and characterization of mRNA cap analogs containing phosphorothioate substitutions that bind tightly to eIF4E and are resistant to the decapping pyrophosphatase DcpS. Rna, 2008, 14, 1119-1131.                    | 1.6 | 108       |
| 101 | Adenosine 5′-Tetraphosphate Is a Highly Potent Purinergic Endothelium-Derived Vasoconstrictor.<br>Circulation Research, 2008, 103, 1100-1108.                                                                                 | 2.0 | 19        |
| 102 | m7GTPÂS is a strong and stable inhibitor of cap-dependent translation. Nucleic Acids Symposium Series,<br>2008, 52, 291-292.                                                                                                  | 0.3 | 0         |
| 103 | Bisphosphonate mRNA cap analog attached to Sepharose for affinity chromatography of decapping enzymes. Nucleic Acids Symposium Series, 2008, 52, 295-296.                                                                     | 0.3 | 2         |
| 104 | Synthesis and biochemical studies of tetraphosphate 5' mRNA cap analogs bearing bisphosphonate modification. Nucleic Acids Symposium Series, 2008, 52, 287-288.                                                               | 0.3 | 0         |
| 105 | Synthesis and properties of boranophosphate mRNA cap analogues. , 2008, , .                                                                                                                                                   |     | 2         |
| 106 | Bisphosphonate modification in tetraphosphate 5'mRNA cap analogs – synthesis and biochemical properties. , 2008, , .                                                                                                          |     | 1         |
| 107 | Affinity of Dinucleotide Cap Analogues for Human Decapping Scavenger (hDcpS). Nucleosides,<br>Nucleotides and Nucleic Acids, 2007, 26, 1349-1352.                                                                             | 0.4 | 9         |
| 108 | Assignment of the Absolute Configuration of P-Chiral 5′Mrna Cap Analogues Containing<br>Phosphorothioate Moiety. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1301-1305.                                             | 0.4 | 1         |

| #   | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Synthesis of <sup><b>3</b></sup> H and <sup><b>13</b></sup> C Labeled Mrna Cap Dinucleotides—Useful<br>Tools for Nmr, Biochemical, and Biological Studies. Nucleosides, Nucleotides and Nucleic Acids, 2007,<br>26, 1315-1319. | 0.4 | 3         |
| 110 | Solid-Supported Synthesis of 5′-mRNA CAP-4 from Trypanosomatids. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1329-1333.                                                                                              | 0.4 | 4         |
| 111 | Weak binding affinity of human 4EHP for mRNA cap analogs. Rna, 2007, 13, 691-697.                                                                                                                                              | 1.6 | 66        |
| 112 | Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells. Rna, 2007, 13, 1745-1755.                                                                                                | 1.6 | 126       |
| 113 | Synthesis of <b><i>Leishmania</i></b> Cap-4 Intermediates, Cap-2 and Cap-3. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1339-1348.                                                                                   | 0.4 | 2         |
| 114 | Kinetics of C. Elegans DcpS Cap Hydrolysis Studied by Fluorescence Spectroscopy. Nucleosides,<br>Nucleotides and Nucleic Acids, 2007, 26, 1211-1215.                                                                           | 0.4 | 1         |
| 115 | Interaction of human decapping scavenger with 5′ mRNA cap analogues: structural requirements for catalytic activity. Journal of Physics Condensed Matter, 2007, 19, 285217.                                                    | 0.7 | 8         |
| 116 | Synthesis of Antiâ€Reverse Cap Analogs (ARCAs) and their Applications in mRNA Translation and Stability.<br>Methods in Enzymology, 2007, 431, 203-227.                                                                         | 0.4 | 79        |
| 117 | A simple and rapid synthesis of nucleotide analogues containing a phosphorothioate moiety at the terminal position of the phosphate chain. Tetrahedron Letters, 2007, 48, 5475-5479.                                           | 0.7 | 34        |
| 118 | Differential Inhibition of mRNA Degradation Pathways by Novel Cap Analogs. Journal of Biological Chemistry, 2006, 281, 1857-1867.                                                                                              | 1.6 | 73        |
| 119 | Methylene analogues of adenosine 5'-tetraphosphate. Their chemical synthesis and recognition by<br>human and plant mononucleoside tetraphosphatases and dinucleoside tetraphosphatases. FEBS<br>Journal, 2006, 273, 829-838.   | 2.2 | 9         |
| 120 | Enzymatically stable 5â€2 mRNA cap analogs: Synthesis and binding studies with human DcpS decapping enzyme. Bioorganic and Medicinal Chemistry, 2006, 14, 3223-3230.                                                           | 1.4 | 51        |
| 121 | A direct method for the synthesis of nucleoside 5′-methylenebis(phosphonate)s from nucleosides.<br>Tetrahedron Letters, 2005, 46, 2417-2421.                                                                                   | 0.7 | 38        |
| 122 | The antiviral drug ribavirin does not mimic the 7-methylguanosine moiety of the mRNA cap structure in vitro. Rna, 2005, 11, 1505-1513.                                                                                         | 1.6 | 37        |
| 123 | A NOVEL APPROACH TO SOLID PHASE CHEMICAL SYNTHESIS OF OLIGONUCLEOTIDE mRNA CAP ANALOGS.<br>Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 601-605.                                                                      | 0.4 | 16        |
| 124 | NOVEL DINUCLEOSIDE $5\hat{e}^2$ , $5\hat{e}^2$ -TRIPHOSPHATE CAP ANALOGUES. SYNTHESIS AND AFFINITY FOR MURINE TRANSLATION FACTOR eIF4E. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 629-633.                         | 0.4 | 6         |
| 125 | SYNTHESIS AND PROPERTIES OF mRNA CAP ANALOGS CONTAINING PHOSPHOROTHIOATE MOIETY IN $5\hat{a}\in^2$ -TRIPHOSPHATE CHAIN. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 595-600.                                         | 0.4 | 10        |
| 126 | SYNTHESIS AND BIOCHEMICAL PROPERTIES OF NOVEL mRNA 5′ CAP ANALOGS RESISTANT TO ENZYMATIC HYDROLYSIS. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 615-621.                                                            | 0.4 | 28        |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | SYNTHESIS AND ENZYMATIC CHARACTERIZATION OF METHYLENE ANALOGS OF ADENOSINE $5\hat{a}\in^2$ -TETRAPHOSPHATE (P4A). Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 589-593.                       | 0.4 | 6         |
| 128 | Influence of Electric Charge Variation at Residues 209 and 159 on the Interaction of elF4E with the mRNA 5†Terminusâ€. Biochemistry, 2004, 43, 5370-5379.                                              | 1.2 | 70        |
| 129 | Chemical synthesis and binding activity of the trypanosomatid cap-4 structure. Rna, 2004, 10, 1469-1478.                                                                                               | 1.6 | 33        |
| 130 | Synthesis of Novel mRNA 5′ Cap-Analogues: Dinucleoside P1, P3-Tri-, P1, P4-Tetra-, and P1, P5-Pentaphosphates. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 691-694.                          | 0.4 | 17        |
| 131 | Influence of the Length of the Phosphate Chain in mRNA 5′ Cap Analogues on Their Interaction with<br>Eukaryotic Initiation Factor 4E. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1707-1710. | 0.4 | 4         |
| 132 | Binding Studies of Eukaryotic Initiation Factor eIF4E with Novel mRNA Dinucleotide Cap Analogues.<br>Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1703-1706.                                  | 0.4 | 2         |
| 133 | Interaction Between Yeast Eukaryotic Initiation Factor eIF4E and mRNA 5′ Cap Analogues Differs from That for Murine eIF4E. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1711-1714.            | 0.4 | 9         |
| 134 | Novel "anti-reverse" cap analogs with superior translational properties. Rna, 2003, 9, 1108-1122.                                                                                                      | 1.6 | 214       |
| 135 | Synthesis of tritium labeled isotopomers ofL-tyrosine. Journal of Labelled Compounds and Radiopharmaceuticals, 2002, 45, 559-567.                                                                      | 0.5 | 6         |
| 136 | Catalytic efficiency of divalent metal salts in dinucleoside 5',5'-triphosphate bond formation. , 2002, , .                                                                                            |     | 5         |
| 137 | Synthesis of tritium labeled [3R-3H]-, and [3S-3H]-L-phenylalanine. Journal of Labelled Compounds and Radiopharmaceuticals, 2001, 44, 295-304.                                                         | 0.5 | 5         |
| 138 | Enzymatic syntheses of carbon-14 labeled isotopomers of L-phenylalanine. Journal of Radioanalytical<br>and Nuclear Chemistry, 2001, 247, 371-374.                                                      | 0.7 | 7         |
| 139 | Tritium Secondary Kinetic Isotope Effect on Phenylalanine Ammonia-Lyase-Catalyzed Reaction. Archives of Biochemistry and Biophysics, 1999, 370, 216-221.                                               | 1.4 | 17        |
| 140 | Enzymatic Synthesis of [1- <sup>13</sup> C]- and [1- <sup>14</sup> C]-L-Phenyl-Alanine. Isotopes in Environmental and Health Studies, 1998, 34, 335-339.                                               | 0.5 | 13        |