Han Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1260738/publications.pdf

Version: 2024-02-01

8138 11608 33,886 144 70 148 citations h-index g-index papers 161 161 161 46557 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Integrated genomic characterization of endometrial carcinoma. Nature, 2013, 497, 67-73.	13.7	4,075
2	The Immune Landscape of Cancer. Immunity, 2018, 48, 812-830.e14.	6.6	3,706
3	An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell, 2018, 173, 400-416.e11.	13.5	2,277
4	Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell, 2018, 173, 321-337.e10.	13.5	2,111
5	Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell, 2018, 173, 291-304.e6.	13.5	1,718
6	Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell, 2018, 173, 371-385.e18.	13.5	1,670
7	Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature, 2014, 512, 155-160.	13.7	911
8	Genomic and Functional Approaches to Understanding Cancer Aneuploidy. Cancer Cell, 2018, 33, 676-689.e3.	7.7	750
9	Human polymorphism at microRNAs and microRNA target sites. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3300-3305.	3.3	616
10	Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. Cell Systems, 2018, 6, 271-281.e7.	2.9	605
11	Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nature Genetics, 2018, 50, 1705-1715.	9.4	561
12	TANRIC: An Interactive Open Platform to Explore the Function of IncRNAs in Cancer. Cancer Research, 2015, 75, 3728-3737.	0.4	518
13	A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nature Communications, 2014, 5, 3887.	5.8	456
14	TCPA: a resource for cancer functional proteomics data. Nature Methods, 2013, 10, 1046-1047.	9.0	446
15	The LINK-A lncRNA activates normoxic HIF1 $\hat{l}\pm$ signalling in triple-negative breast cancer. Nature Cell Biology, 2016, 18, 213-224.	4.6	444
16	A Pan-Cancer Proteogenomic Atlas of PI3K/AKT/mTOR Pathway Alterations. Cancer Cell, 2017, 31, 820-832.e3.	7.7	433
17	The Genomic Landscape and Clinical Relevance of A-to-I RNA Editing in Human Cancers. Cancer Cell, 2015, 28, 515-528.	7.7	426
18	High Frequency of <i>PIK3R1</i> and <i>PIK3R2</i> Mutations in Endometrial Cancer Elucidates a Novel Mechanism for Regulation of PTEN Protein Stability. Cancer Discovery, 2011, 1, 170-185.	7.7	419

#	Article	IF	Citations
19	Driver Fusions and Their Implications in the Development and Treatment of Human Cancers. Cell Reports, 2018, 23, 227-238.e3.	2.9	407
20	IncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic IncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in Cancer. Cancer Cell, 2018, 33, 706-720.e9.	7.7	400
21	Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types. Nature Communications, 2014, 5, 3231.	5.8	385
22	ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nature Medicine, 2018, 24, 556-562.	15.2	372
23	ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nature Cell Biology, 2014, 16, 864-875.	4.6	367
24	LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nature Medicine, 2012, 18, 1511-1517.	15.2	361
25	Comprehensive Molecular Characterization of the Hippo Signaling Pathway in Cancer. Cell Reports, 2018, 25, 1304-1317.e5.	2.9	329
26	Assessing the clinical utility of cancer genomic and proteomic data across tumor types. Nature Biotechnology, 2014, 32, 644-652.	9.4	257
27	Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nature Genetics, 2020, 52, 342-352.	9.4	256
28	A ROR1–HER3–IncRNA signalling axis modulates the Hippo–YAP pathway to regulate bone metastasis. Nature Cell Biology, 2017, 19, 106-119.	4.6	253
29	Comprehensive Characterization of Molecular Differences in Cancer between Male and Female Patients. Cancer Cell, 2016, 29, 711-722.	7.7	242
30	LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress. Nature Cell Biology, 2016, 18, 431-442.	4.6	239
31	A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples. Cell, 2018, 173, 386-399.e12.	13.5	228
32	Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell, 2018, 33, 450-462.e10.	7.7	213
33	Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer. Genome Research, 2012, 22, 2120-2129.	2.4	206
34	Pan-Cancer Analysis of IncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context. Cell Reports, 2018, 23, 297-312.e12.	2.9	205
35	Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers. Cell Reports, 2018, 23, 255-269.e4.	2.9	204
36	The LINK-A lncRNA interacts with PtdIns(3,4,5)P3 toÂhyperactivate AKTÂand confer resistance to AKTÂinhibitors. Nature Cell Biology, 2017, 19, 238-251.	4.6	201

#	Article	IF	Citations
37	Characterization of Human Cancer Cell Lines by Reverse-phase Protein Arrays. Cancer Cell, 2017, 31, 225-239.	7.7	190
38	Landscape of dietary factors associated with risk of gastric cancer: A systematic review and dose-response meta-analysis of prospective cohort studies. European Journal of Cancer, 2015, 51, 2820-2832.	1.3	187
39	Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer. EMBO Journal, 2011, 30, 4500-4514.	3.5	175
40	A-to-I RNA Editing Contributes to Proteomic Diversity in Cancer. Cancer Cell, 2018, 33, 817-828.e7.	7.7	172
41	Characterization of hypoxia-associated molecular features to aid hypoxia-targeted therapy. Nature Metabolism, 2019, 1, 431-444.	5.1	158
42	Energy stress-induced lncRNA FILNC1 represses c-Myc-mediated energy metabolism and inhibits renal tumor development. Nature Communications, 2017, 8, 783.	5.8	157
43	MicroRNA regulation of human protein–protein interaction network. Rna, 2007, 13, 1402-1408.	1.6	153
44	An integrated bioinformatics platform for investigating the human E3 ubiquitin ligase-substrate interaction network. Nature Communications, 2017, 8, 347.	5.8	151
45	miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nature Communications, 2014, 5, 5671.	5.8	148
46	Systematic characterization of A-to-I RNA editing hotspots in microRNAs across human cancers. Genome Research, 2017, 27, 1112-1125.	2.4	144
47	The Pan-Cancer analysis of pseudogene expression reveals biologically and clinically relevant tumour subtypes. Nature Communications, 2014, 5, 3963.	5.8	143
48	Allele-Specific Reprogramming of Cancer Metabolism by the Long Non-coding RNA CCAT2. Molecular Cell, 2016, 61, 520-534.	4.5	142
49	RNA editing derived epitopes function as cancer antigens to elicit immune responses. Nature Communications, 2018, 9, 3919.	5.8	120
50	SKP2- and OTUD1-regulated non-proteolytic ubiquitination of YAP promotes YAP nuclear localization and activity. Nature Communications, 2018, 9, 2269.	5.8	117
51	A targetable LIFRâ^'NF-κBâ^'LCN2 axis controls liver tumorigenesis and vulnerability to ferroptosis. Nature Communications, 2021, 12, 7333.	5.8	117
52	ILF2 Is a Regulator of RNA Splicing and DNA Damage Response in 1q21-Amplified Multiple Myeloma. Cancer Cell, 2017, 32, 88-100.e6.	7.7	114
53	miR-100 Induces Epithelial-Mesenchymal Transition but Suppresses Tumorigenesis, Migration and Invasion. PLoS Genetics, 2014, 10, e1004177.	1.5	110
54	Gene essentiality, gene duplicability and protein connectivity in human and mouse. Trends in Genetics, 2007, 23, 375-378.	2.9	107

#	Article	IF	CITATIONS
55	Next generation sequencing of pancreatic cyst fluid microRNAs from low grade-benign and high grade-invasive lesions. Cancer Letters, 2015, 356, 404-409.	3.2	105
56	CanDrA: Cancer-Specific Driver Missense Mutation Annotation with Optimized Features. PLoS ONE, 2013, 8, e77945.	1.1	104
57	Before and After: Comparison of Legacy and Harmonized TCGA Genomic Data Commons' Data. Cell Systems, 2019, 9, 24-34.e10.	2.9	103
58	Enabling transparent and collaborative computational analysis of 12 tumor types within The Cancer Genome Atlas. Nature Genetics, 2013, 45, 1121-1126.	9.4	102
59	Explore, Visualize, and Analyze Functional Cancer Proteomic Data Using the Cancer Proteome Atlas. Cancer Research, 2017, 77, e51-e54.	0.4	101
60	Immune Microenvironment in Microsatellite-Instable Endometrial Cancers: Hereditary or Sporadic Origin Matters. Clinical Cancer Research, 2017, 23, 4473-4481.	3.2	96
61	Comparative genomic analysis of esophageal squamous cell carcinoma between Asian and Caucasian patient populations. Nature Communications, 2017, 8, 1533.	5.8	92
62	AMPKα Modulation in Cancer Progression: Multilayer Integrative Analysis of the Whole Transcriptome in Asian Gastric Cancer. Cancer Research, 2012, 72, 2512-2521.	0.4	91
63	HNF4 $\hat{l}\pm$ is a therapeutic target that links AMPK to WNT signalling in early-stage gastric cancer. Gut, 2016, 65, 19-32.	6.1	91
64	NUAK2 is a critical YAP target in liver cancer. Nature Communications, 2018, 9, 4834.	5.8	88
65	Lowly Expressed Human MicroRNA Genes Evolve Rapidly. Molecular Biology and Evolution, 2009, 26, 1195-1198.	3.5	86
66	Telomere Dysfunction Drives Aberrant Hematopoietic Differentiation and Myelodysplastic Syndrome. Cancer Cell, 2015, 27, 644-657.	7.7	85
67	Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types. Cell Reports, 2018, 23, 213-226.e3.	2.9	83
68	Hypothesis: RNA editing of microRNA target sites in humans?. Rna, 2007, 13, 463-467.	1.6	80
69	Ablation of miR-10b Suppresses Oncogene-Induced Mammary Tumorigenesis and Metastasis and Reactivates Tumor-Suppressive Pathways. Cancer Research, 2016, 76, 6424-6435.	0.4	77
70	α-catenin acts as a tumour suppressor in E-cadherin-negative basal-like breast cancer by inhibiting NF-κB signalling. Nature Cell Biology, 2014, 16, 245-254.	4.6	74
71	Naturally Occurring Neomorphic PIK3R1 Mutations Activate the MAPK Pathway, Dictating Therapeutic Response to MAPK Pathway Inhibitors. Cancer Cell, 2014, 26, 479-494.	7.7	73
72	PATHOME: an algorithm for accurately detecting differentially expressed subpathways. Oncogene, 2014, 33, 4941-4951.	2.6	70

#	Article	IF	CITATIONS
73	Bacteria-to-Human Protein Networks Reveal Origins of Endogenous DNA Damage. Cell, 2019, 176, 127-143.e24.	13.5	69
74	A High-Resolution Map of Human Enhancer RNA Loci Characterizes Super-enhancer Activities in Cancer. Cancer Cell, 2020, 38, 701-715.e5.	7.7	69
75	The role of A-to-I RNA editing in cancer development. Current Opinion in Genetics and Development, 2018, 48, 51-56.	1.5	67
76	Verteporfin Inhibits PD-L1 through Autophagy and the STAT1–IRF1–TRIM28 Signaling Axis, Exerting Antitumor Efficacy. Cancer Immunology Research, 2020, 8, 952-965.	1.6	63
77	TCPA v3.0: An Integrative Platform to Explore the Pan-Cancer Analysis of Functional Proteomic Data. Molecular and Cellular Proteomics, 2019, 18, S15-S25.	2.5	61
78	Multi-omics characterization of molecular features of gastric cancer correlated with response to neoadjuvant chemotherapy. Science Advances, 2020, 6, eaay4211.	4.7	60
79	Protein Under-Wrapping Causes Dosage Sensitivity and Decreases Gene Duplicability. PLoS Genetics, 2008, 4, e11.	1.5	53
80	Identification of cancer sex-disparity in the functional integrity of p53 and its X chromosome network. Nature Communications, 2019, 10, 5385.	5.8	53
81	The somatic mutation landscape of premalignant colorectal adenoma. Gut, 2018, 67, 1299-1305.	6.1	52
82	Sex disparities in cancer. Cancer Letters, 2019, 466, 35-38.	3.2	50
83	Clinical and Biologic Significance of <i>MYC</i> Genetic Mutations in <i>De Novo</i> Diffuse Large B-cell Lymphoma. Clinical Cancer Research, 2016, 22, 3593-3605.	3.2	48
84	The evolutionary origin of a complex scrambled gene. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15149-15154.	3.3	47
85	Personal Mutanomes Meet Modern Oncology Drug Discovery and Precision Health. Pharmacological Reviews, 2019, 71, 1-19.	7.1	47
86	Comprehensive assessment of computational algorithms in predicting cancer driver mutations. Genome Biology, 2020, 21, 43.	3.8	47
87	A-to-l–edited miRNA-379-5p inhibits cancer cell proliferation through CD97-induced apoptosis. Journal of Clinical Investigation, 2019, 129, 5343-5356.	3.9	46
88	Epstein–Barr Virus MicroRNAs are Expressed in Patients with Chronic Lymphocytic Leukemia and Correlate with Overall Survival. EBioMedicine, 2015, 2, 572-582.	2.7	43
89	ZRANB1 Is an EZH2 Deubiquitinase and a Potential Therapeutic Target in Breast Cancer. Cell Reports, 2018, 23, 823-837.	2.9	42
90	SWAKK: a web server for detecting positive selection in proteins using a sliding window substitution rate analysis. Nucleic Acids Research, 2006, 34, W382-W384.	6.5	41

#	Article	IF	CITATIONS
91	p53 deficiency linked to B cell translocation gene 2 (BTG2) loss enhances metastatic potential by promoting tumor growth in primary and metastatic sites in patient-derived xenograft (PDX) models of triple-negative breast cancer. Breast Cancer Research, 2016, 18, 13.	2.2	41
92	APAatlas: decoding alternative polyadenylation across human tissues. Nucleic Acids Research, 2020, 48, D34-D39.	6.5	41
93	SMARCAD1 Contributes to the Regulation of Naive Pluripotency by Interacting with Histone Citrullination. Cell Reports, 2017, 18, 3117-3128.	2.9	40
94	Large-Scale Characterization of Drug Responses of Clinically Relevant Proteins in Cancer Cell Lines. Cancer Cell, 2020, 38, 829-843.e4.	7.7	40
95	Ultraconserved long non-coding RNA uc.63 in breast cancer. Oncotarget, 2017, 8, 35669-35680.	0.8	38
96	Prevalent Homozygous Deletions of Type I Interferon and Defensin Genes in Human Cancers Associate with Immunotherapy Resistance. Clinical Cancer Research, 2018, 24, 3299-3308.	3.2	37
97	A genome-wide study of dual coding regions in human alternatively spliced genes. Genome Research, 2005, 16, 190-196.	2.4	36
98	Conservation of tandem stop codons in yeasts. Genome Biology, 2005, 6, R31.	13.9	36
99	ldentifying molecular drivers of gastric cancer through next-generation sequencing. Cancer Letters, 2013, 340, 241-246.	3.2	36
100	Transcribed ultraconserved region 339 promotes carcinogenesis by modulating tumor suppressor microRNAs. Nature Communications, 2017, 8, 1801.	5.8	36
101	When MicroRNAs Meet RNA Editing in Cancer: A Nucleotide Change Can Make a Difference. BioEssays, 2018, 40, 1700188.	1.2	35
102	Predicting the lethal phenotype of the knockout mouse by integrating comprehensive genomic data. Bioinformatics, 2012, 28, 1246-1252.	1.8	34
103	Integrated genomic analysis of recurrence-associated small non-coding RNAs in oesophageal cancer. Gut, 2017, 66, 215-225.	6.1	34
104	A functional genomic screen in vivo identifies CEACAM5 as a clinically relevant driver of breast cancer metastasis. Npj Breast Cancer, 2018, 4, 9.	2.3	32
105	A pathway-based approach for identifying biomarkers of tumor progression to trastuzumab-resistant breast cancer. Cancer Letters, 2015, 356, 880-890.	3.2	31
106	Biosynthetic energy cost for amino acids decreases in cancer evolution. Nature Communications, 2018, 9, 4124.	5.8	27
107	Decoding the Decoding Region: Analysis of Eukaryotic Release Factor (eRF1) Stop Codon-Binding Residues. Journal of Molecular Evolution, 2005, 60, 337-344.	0.8	26
108	Functional compensation by duplicated genes in mouse. Trends in Genetics, 2009, 25, 441-442.	2.9	25

#	Article	IF	Citations
109	Integrative Protein-Based Prognostic Model for Early-Stage Endometrioid Endometrial Cancer. Clinical Cancer Research, 2016, 22, 513-523.	3.2	25
110	Next-Generation Analytics for Omics Data. Cancer Cell, 2021, 39, 3-6.	7.7	24
111	Protein structure protection commits gene expression patterns. Genome Biology, 2008, 9, R107.	13.9	23
112	BM-Map: Bayesian Mapping of Multireads for Next-Generation Sequencing Data. Biometrics, 2011, 67, 1215-1224.	0.8	23
113	SurvNet: a web server for identifying network-based biomarkers that most correlate with patient survival data. Nucleic Acids Research, 2012, 40, W123-W126.	6.5	23
114	Distinct telomere length and molecular signatures in seminoma and non-seminoma of testicular germ cell tumor. Briefings in Bioinformatics, 2019, 20, 1502-1512.	3.2	22
115	Fast-Evolving Human-Specific Neural Enhancers Are Associated with Aging-Related Diseases. Cell Systems, 2018, 6, 604-611.e4.	2.9	20
116	A four-gene signature predicts survival and anti-CTLA4 immunotherapeutic responses based on immune classification of melanoma. Communications Biology, 2021, 4, 383.	2.0	20
117	Detecting positive selection in the budding yeast genome. Journal of Evolutionary Biology, 2009, 22, 2430-2437.	0.8	19
118	Protein profiling identifies mTOR pathway modulation and cytostatic effects of Pim kinase inhibitor, AZD1208, in acute myeloid leukemia. Leukemia and Lymphoma, 2016, 57, 2863-2873.	0.6	19
119	SRC-3 inhibition blocks tumor growth of pancreatic ductal adenocarcinoma. Cancer Letters, 2019, 442, 310-319.	3.2	17
120	Using Reverse Phase Protein Array (RPPA) to Identify and Target Adaptive Resistance. Advances in Experimental Medicine and Biology, 2019, 1188, 251-266.	0.8	17
121	Differential expression of MAGEA6 toggles autophagy to promote pancreatic cancer progression. ELife, 2020, 9, .	2.8	16
122	Fast Evolution of Core Promoters in Primate Genomes. Molecular Biology and Evolution, 2008, 25, 1239-1244.	3.5	15
123	Comparative analysis of somatic copy-number alterations across different human cancer types reveals two distinct classes of breakpoint hotspots. Human Molecular Genetics, 2012, 21, 4957-4965.	1.4	15
124	Personalized Integrated Network Modeling of the Cancer Proteome Atlas. Scientific Reports, 2018, 8, 14924.	1.6	14
125	Personalized Network Modeling of the Pan-Cancer Patient and Cell Line Interactome. JCO Clinical Cancer Informatics, 2020, 4, 399-411.	1.0	13
126	Systematic functional interrogation of human pseudogenes using CRISPRi. Genome Biology, 2021, 22, 240.	3.8	13

#	Article	IF	Citations
127	Genomic characterization of co-existing neoplasia and carcinoma lesions reveals distinct evolutionary paths of gallbladder cancer. Nature Communications, 2021, 12, 4753.	5.8	12
128	Ventilatorâ€induced diaphragmatic dysfunction in <i>MDX</i> mice. Muscle and Nerve, 2018, 57, 442-448.	1.0	11
129	Predicting Cancer Cell Line Dependencies From the Protein Expression Data of Reverse-Phase Protein Arrays. JCO Clinical Cancer Informatics, 2020, 4, 357-366.	1.0	11
130	Immunogenomic pan-cancer landscape reveals immune escape mechanisms and immunoediting histories. Scientific Reports, 2021, 11, 15713.	1.6	10
131	Analytical Platforms 3: Processing Samples via the RPPA Pipeline to Generate Large-Scale Data for Clinical Studies. Advances in Experimental Medicine and Biology, 2019, 1188, 113-147.	0.8	9
132	A functional genomic approach to actionable gene fusions for precision oncology. Science Advances, 2022, 8, eabm2382.	4.7	9
133	Molecular mimicry: Quantitative methods to study structural similarity between protein and RNA. Rna, 2005, 11, 1167-1172.	1.6	8
134	RNA editing increases the nucleotide diversity of SARS-CoV-2 in human host cells. PLoS Genetics, 2022, 18, e1010130.	1.5	8
135	RNA editing in cancer: Mechanistic, prognostic, and therapeutic implications. Molecular and Cellular Oncology, 2016, 3, e1117702.	0.3	7
136	Analysis of the genomic landscape of yolk sac tumors reveals mechanisms of evolution and chemoresistance. Nature Communications, 2021, 12, 3579.	5.8	7
137	BM-Map: an efficient software package for accurately allocating multireads of RNA-sequencing data. BMC Genomics, 2012, 13, S9.	1.2	6
138	Evolutionary constraints imposed by gene dosage balance. Frontiers in Bioscience - Landmark, 2008, Volume, 4373.	3.0	5
139	Credentialing Individual Samples for Proteogenomic Analysis. Molecular and Cellular Proteomics, 2018, 17, 1515-1530.	2.5	5
140	Decoding the dual-coding region: key factors influencing the translational potential of a two-ORF-containing transcript. Cell Research, 2010, 20, 508-509.	5.7	3
141	More reliable breast cancer risk assessment for every woman. Cancer Cell, 2021, 39, 457-459.	7.7	2
142	Are stop codons recognized by base triplets in the large ribosomal RNA subunit?. Rna, 2005, 11, 1478-1484.	1.6	1
143	Finding cancer drivers in the UPS system. Nature Cancer, 2020, 1, 20-21.	5.7	1
144	Convergent Usage of Amino Acids in Human Cancers as A Reversed Process of Tissue Development. Genomics, Proteomics and Bioinformatics, 2022, 20, 147-162.	3.0	1