
Alex Hamilton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1260192/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Mechanistic Rationale for the 9-Amino(9-deoxy) <i>epi</i> Cinchona Alkaloids Catalyzed Asymmetric Reactions via Iminium Ion Activation of Enones. Journal of the American Chemical Society, 2013, 135, 9091-9098.	13.7	72
2	Further Exploring the "Sting of the Scorpionâ€! Hydride Migration and Subsequent Rearrangement of Norbornadiene to Nortricyclyl on Rhodium(I). Organometallics, 2009, 28, 5222-5232.	2.3	59
3	A new family of metallaboratrane complexes based on 7-azaindole: B–H activation mediated by carbon monoxide. Chemical Communications, 2009, , 2538.	4.1	58
4	Cp*Co(III)â€Catalyzed Coupling of Benzamides with α,βâ€Unsaturated Carbonyl Compounds: Preparation of Aliphatic Ketones and Azepinones. Chemistry - A European Journal, 2018, 24, 3584-3589.	3.3	54
5	A new family of flexible scorpionate ligands based on 2-mercaptopyridine. Dalton Transactions, 2009, , 6120.	3.3	52
6	Palladium Complexes of the Heterodiphosphine <i>>o-</i> C ₆ H ₄ (CH ₂ P ^t Bu ₂)(CH ₂ PP Are Highly Selective and Robust Catalysts for the Hydromethoxycarbonylation of Ethene. Organometallics, 2010, 29, 2292-2305.	hչsub>2<	:/sub>)
7	A â€~sting' on Grubbs' catalyst: an insight into hydride migration between boron and a transition metal. Chemical Communications, 2009, , 553-555.	4.1	45
8	A new hybrid scorpionate ligand: a study of the metal–boron bond within metallaboratrane complexes. Dalton Transactions, 2010, 39, 392-400.	3.3	44
9	Influence of the Solvent and Metal Center on Supramolecular Chirality Induction with Bisporphyrin Tweezer Receptors. Strong Metal Modulation of Effective Molarity Values. Inorganic Chemistry, 2012, 51, 4620-4635.	4.0	42
10	Flexible scorpionates for transfer hydrogenation: the first example of their catalytic application. Dalton Transactions, 2008, , 6039.	3.3	41
11	Anatomy of Phobanes. Diastereoselective Synthesis of the Three Isomers of <i>n</i> -Butylphobane and a Comparison of their Donor Properties. Journal of the American Chemical Society, 2009, 131, 3078-3092.	13.7	38
12	Unexpected pincer-type coordination (l̂º ³ -SBS) within a zerovalent platinum metallaboratrane complex. Dalton Transactions, 2010, 39, 49-52.	3.3	38
13	Interplay of bite angle and cone angle effects. A comparison between o-C ₆ H ₄ (CH ₂ PR ₂)(PR′ ₂) and o-C ₆ H ₄ (CH ₂ PR ₂)(CH ₂) as ligands for Pd-catalysed ethene hydromethoxycarbonylation. Dalton Transactions. 2013. 42. 100-115.	3.3	31
14	A novel route to rhodaboratranes [Rh(CO)(PR3){B(taz)3}]+via the redox activation of scorpionate complexes [RhLL′Tt]. Dalton Transactions, 2009, , 8724.	3.3	30
15	Fluxional rhodium scorpionate complexes of the hydrotris(methimazolyl)borate (Tm) ligand and their static boratrane derivatives. Dalton Transactions, 2010, 39, 5221.	3.3	29
16	Efficient and chemoselective ethene hydromethoxycarbonylation catalysts based on Pd-complexes of heterodiphosphines o-C ₆ H ₄ (CH ₂ P ^t Bu ₂)(CH ₂ PR _{2 Catalysis Science and Technology, 2012, 2, 937-950.}	2).	28
17	Strong agostic-type interactions in ruthenium benzylidene complexes containing 7-azaindole based scorpionate ligands. Dalton Transactions, 2011, 40, 951-958.	3.3	24
18	Towards a Sequential Oneâ€Pot Preparation of 1,2,3â€Benzotriazinâ€4(3 <i>H</i>)â€ones Employing a Key Cp*Co(III)â€catalyzed Câ^'H Amidation Step. Advanced Synthesis and Catalysis, 2018, 360, 2324-2332.	4.3	24

ALEX HAMILTON

#	Article	IF	CITATIONS
19	Insight into the Hydrogen Migration Processes Involved in the Formation of Metal–Borane Complexes: Importance of the Third Arm of the Scorpionate Ligand. Organometallics, 2013, 32, 2840-2856.	2.3	22
20	Potassium S2N-heteroscorpionates: structure and iridaboratrane formation. Dalton Transactions, 2011, 40, 4647.	3.3	21
21	Isomerism in rhodium(i) N,S-donor heteroscorpionates: ring substituent and ancillary ligand effects. Dalton Transactions, 2010, 39, 11616.	3.3	16
22	Catalytic Formation of Cyclic Carbonates using Gallium Aminotrisphenolate Compounds and Comparison to their Aluminium Congeners: A Combined Experimental and Computational Study. ChemCatChem, 2021, 13, 4099-4110.	3.7	14
23	Copper and silver complexes bearing flexible hybrid scorpionate ligandmp Bm . Dalton Transactions, 2013, 42, 11074-11081.	3.3	10
24	A challenging redox neutral Cp*Co(III)-catalysed alkylation of acetanilides with 3-buten-2-one: synthesis and key insights into the mechanism through DFT calculations. Beilstein Journal of Organic Chemistry, 2018, 14, 2366-2374.	2.2	7
25	Merging Cu-catalysed C–H functionalisation and intramolecular annulations: computational and experimental studies on an expedient construction of complex fused heterocycles. Organic Chemistry Frontiers, 2020, 7, 1235-1242.	4.5	6
26	Unexpectedly High Barriers to M–P Rotation in Tertiary Phobane Complexes: PhobPR Behavior That Is Commensurate with tBu2PR. Organometallics, 2014, 33, 702-714.	2.3	3
27	Mechanisms of Catalysis in Confined Spaces: Hydrogenation of Norbornadiene with a Rhodium Complex included in a Self-Folding Cavitand. Current Organic Chemistry, 2013, 17, 1499-1506.	1.6	3
28	Cytotoxic properties of rhenium(<scp>i</scp>) tricarbonyl complexes of N-heterocyclic carbene ligands. Dalton Transactions, 2022, 51, 7630-7643.	3.3	3
29	The oxidative conversion of the N,S-bridged complexes [{RhLL′(μ-X)}2] to [(RhLL′)3(μ-X)2]+ (X = mt or t comparison with the oxidation of N,N-bridged analogues. Dalton Transactions, 2011, 40, 11497.	az): a	1
30	Unravelling the mechanism of cobalt-catalysed remote C–H nitration of 8-aminoquinolinamides and expansion of substrate scope towards 1-naphthylpicolinamide. Chemical Science, 2020, 11, 534-542.	7.4	1