
David Sulzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1260151/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interpreting the role of the striatum during multiple phases of motor learning. FEBS Journal, 2022, 289, 2263-2281.	2.2	25
2	T cells, α-synuclein and Parkinson disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 439-455.	1.0	8
3	Subcellular proteomics of dopamine neurons in the mouse brain. ELife, 2022, 11, .	2.8	30
4	Subcellular and regional localization of mRNA translation in midbrain dopamine neurons. Cell Reports, 2022, 38, 110208.	2.9	24
5	Transcriptional analysis of peripheral memory T cells reveals Parkinson's disease-specific gene signatures. Npj Parkinson's Disease, 2022, 8, 30.	2.5	20
6	Neuronal Presentation of Antigen and Its Possible Role in Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, S137-S147.	1.5	6
7	Mutant glucocerebrosidase impairs α-synuclein degradation by blockade of chaperone-mediated autophagy. Science Advances, 2022, 8, eabm6393.	4.7	63
8	Chemical Targeting of Rhodol Voltage-Sensitive Dyes to Dopaminergic Neurons. ACS Chemical Neuroscience, 2022, 13, 1251-1262.	1.7	0
9	Similarities and differences between nigral and enteric dopaminergic neurons unravel distinctive involvement in Parkinson's disease. Npj Parkinson's Disease, 2022, 8, 50.	2.5	14
10	Misfolded GBA/β-glucocerebrosidase impairs ER-quality control by chaperone-mediated autophagy in Parkinson disease. Autophagy, 2022, 18, 3050-3052.	4.3	9
11	Inflammation in Experimental Models of α <scp>â€Synucleinopathies</scp> . Movement Disorders, 2021, 36, 37-49.	2.2	24
12	Oleh Hornykiewicz, a giant in the understanding and treatment of Parkinson disease. Npj Parkinson's Disease, 2021, 7, 1.	2.5	43
13	Roles for the Dorsal Striatum in Aversive Behavior. Frontiers in Cellular Neuroscience, 2021, 15, 634493.	1.8	7
14	The role of immune-mediated alterations and disorders in ALS disease. Human Immunology, 2021, 82, 155-161.	1.2	17
15	Coordinated Postnatal Maturation of Striatal Cholinergic Interneurons and Dopamine Release Dynamics in Mice. Journal of Neuroscience, 2021, 41, 3597-3609.	1.7	10
16	Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome. Cell, 2021, 184, 2696-2714.e25.	13.5	151
17	The chemical tools for imaging dopamine release. Cell Chemical Biology, 2021, 28, 748-764.	2.5	24
18	Alpha-synuclein research: defining strategic moves in the battle against Parkinson's disease. Npj Parkinson's Disease, 2021, 7, 65.	2.5	74

#	Article	IF	CITATIONS
19	Roles for α-Synuclein in Gene Expression. Genes, 2021, 12, 1166.	1.0	16
20	CalDAG-GEFI mediates striatal cholinergic modulation of dendritic excitability, synaptic plasticity and psychomotor behaviors. Neurobiology of Disease, 2021, 158, 105473.	2.1	8
21	The TCR repertoire of α-synuclein-specific T cells in Parkinson's disease is surprisingly diverse. Scientific Reports, 2021, 11, 302.	1.6	26
22	Involvement of Autophagy in Levodopaâ€Induced Dyskinesia. Movement Disorders, 2021, 36, 1137-1146.	2.2	8
23	Development of a Dual Fluorescent and Magnetic Resonance False Neurotransmitter That Reports Accumulation and Release from Dopaminergic Synaptic Vesicles. ACS Chemical Neuroscience, 2021, , .	1.7	3
24	The Synaptic Autophagy Cycle. Journal of Molecular Biology, 2020, 432, 2589-2604.	2.0	44
25	T Cell Responses to Neural Autoantigens Are Similar in Alzheimer's Disease Patients and Age-Matched Healthy Controls. Frontiers in Neuroscience, 2020, 14, 874.	1.4	15
26	A dual role for α-synuclein in facilitation and depression of dopamine release from substantia nigra neurons in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32701-32710.	3.3	41
27	COVID-19 and possible links with Parkinson's disease and parkinsonism: from bench to bedside. Npj Parkinson's Disease, 2020, 6, 18.	2.5	120
28	Chemical Targeting of Voltage Sensitive Dyes to Specific Cells and Molecules in the Brain. Journal of the American Chemical Society, 2020, 142, 9285-9301.	6.6	17
29	Autophagic bias in the striatum. Autophagy, 2020, 16, 1148-1149.	4.3	2
30	mTOR Suppresses Macroautophagy During Striatal Postnatal Development and Is Hyperactive in Mouse Models of Autism Spectrum Disorders. Frontiers in Cellular Neuroscience, 2020, 14, 70.	1.8	20
31	α-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson's disease. Nature Communications, 2020, 11, 1875.	5.8	239
32	Cell-type-specific regulation of neuronal intrinsic excitability by macroautophagy. ELife, 2020, 9, .	2.8	28
33	Alterations in the intrinsic properties of striatal cholinergic interneurons after dopamine lesion and chronic L-DOPA. ELife, 2020, 9, .	2.8	32
34	Roles for the adaptive immune system in Parkinson's and Alzheimer's diseases. Current Opinion in Immunology, 2019, 59, 115-120.	2.4	38
35	The physiological role of αâ€synuclein and its relationship to Parkinson's Disease. Journal of Neurochemistry, 2019, 150, 475-486.	2.1	217
36	Widespread Tau-Specific CD4 T Cell Reactivity in the General Population. Journal of Immunology, 2019, 203, 84-92.	0.4	36

#	Article	IF	CITATIONS
37	Widespread Alterations in Translation Elongation in the Brain of Juvenile Fmr1 Knockout Mice. Cell Reports, 2019, 26, 3313-3322.e5.	2.9	65
38	Autoimmunity in Parkinson's Disease: The Role of α-Synuclein-Specific T Cells. Frontiers in Immunology, 2019, 10, 303.	2.2	120
39	Neuromelanin-sensitive MRI as a noninvasive proxy measure of dopamine function in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5108-5117.	3.3	136
40	Mitochondrial dysfunction and mitophagy defect triggered by heterozygous <i>GBA</i> mutations. Autophagy, 2019, 15, 113-130.	4.3	155
41	Dopamin, oxidativer Stress und Proteinâ€Chinonmodifikationen bei Parkinson und anderen neurodegenerativen Erkrankungen. Angewandte Chemie, 2019, 131, 6580-6596.	1.6	7
42	Dopamine, Oxidative Stress and Protein–Quinone Modifications in Parkinson's and Other Neurodegenerative Diseases. Angewandte Chemie - International Edition, 2019, 58, 6512-6527.	7.2	160
43	Roles for neuronal and glial autophagy in synaptic pruning during development. Neurobiology of Disease, 2019, 122, 49-63.	2.1	69
44	FLUORESCENT FALSE NEUROTRANSMITTERS. , 2019, , 33-48.		0
45	Overexpression of Vesicular Monoamine Transporter-2 may Block Neurotoxic Metabolites from Cytosolic Dopamine: a Potential Neuroprotective Therapy for Parkinson's Disease. Clinical Pharmacology and Translational Medicine, 2019, 3, 143-148.	0.3	2
46	Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson's disease. Npj Parkinson's Disease, 2018, 4, 11.	2.5	169
47	Dopamine's Effects on Corticostriatal Synapses during Reward-Based Behaviors. Neuron, 2018, 97, 494-510.	3.8	102
48	Toward Serotonin Fluorescent False Neurotransmitters: Development of Fluorescent Dual Serotonin and Vesicular Monoamine Transporter Substrates for Visualizing Serotonin Neurons. ACS Chemical Neuroscience, 2018, 9, 925-934.	1.7	25
49	Identification of Fluorescent Small Molecule Compounds for Synaptic Labeling by Image-Based, High-Content Screening. ACS Chemical Neuroscience, 2018, 9, 673-683.	1.7	5
50	Synaptic plasticity may underlie l -DOPA induced dyskinesia. Current Opinion in Neurobiology, 2018, 48, 71-78.	2.0	22
51	Merkel Cells Activate Sensory Neural Pathways through Adrenergic Synapses. Neuron, 2018, 100, 1401-1413.e6.	3.8	84
52	Designing a norepinephrine optical tracer for imaging individual noradrenergic synapses and their activity in vivo. Nature Communications, 2018, 9, 2838.	5.8	42
53	Dopamine Triggers the Maturation of Striatal Spiny Projection Neuron Excitability during a Critical Period. Neuron, 2018, 99, 540-554.e4.	3.8	74
54	An Easy-to-Implement Protocol for Preparing Postnatal Ventral Mesencephalic Cultures. Frontiers in Cellular Neuroscience, 2018, 12, 44.	1.8	8

#	Article	IF	CITATIONS
55	Neuromelanin organelles are specialized autolysosomes that accumulate undegraded proteins and lipids in aging human brain and are likely involved in Parkinson's disease. Npj Parkinson's Disease, 2018, 4, 17.	2.5	101
56	Evoked transients of pH-sensitive fluorescent false neurotransmitter reveal dopamine hot spots in the globus pallidus. ELife, 2018, 7, .	2.8	12
57	Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease. Progress in Neurobiology, 2017, 155, 96-119.	2.8	490
58	Endocannabinoid modulation of dopamine neurotransmission. Neuropharmacology, 2017, 124, 52-61.	2.0	133
59	T cells from patients with Parkinson's disease recognize α-synuclein peptides. Nature, 2017, 546, 656-661.	13.7	618
60	Neuroprotection and neurorestoration as experimental therapeutics for Parkinson's disease. Experimental Neurology, 2017, 298, 137-147.	2.0	50
61	Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT. Neuron, 2017, 95, 1074-1088.e7.	3.8	69
62	α-Synuclein-Dependent Calcium Entry Underlies Differential Sensitivity of Cultured SN and VTA Dopaminergic Neurons to a Parkinsonian Neurotoxin. ENeuro, 2017, 4, ENEURO.0167-17.2017.	0.9	64
63	Dopamine neuron dependent behaviors mediated by glutamate cotransmission. ELife, 2017, 6, .	2.8	41
64	Parkinsonism Driven by Antipsychotics Originates from Dopaminergic Control of Striatal Cholinergic Interneurons. Neuron, 2016, 91, 67-78.	3.8	77
65	Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14835-14840.	3.3	438
66	ApoE4 upregulates the activity of mitochondriaâ€associated ER membranes. EMBO Reports, 2016, 17, 27-36.	2.0	119
67	Voluntary adolescent drinking enhances excitation by low levels of alcohol in a subset of dopaminergic neurons in the ventral tegmental area. Neuropharmacology, 2016, 110, 386-395.	2.0	22
68	Mechanisms of amphetamine action illuminated through optical monitoring of dopamine synaptic vesicles in Drosophila brain. Nature Communications, 2016, 7, 10652.	5.8	97
69	Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation. Stem Cell Reports, 2016, 7, 664-677.	2.3	164
70	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
71	Fluorescent false neurotransmitter reveals functionally silent dopamine vesicle clusters in the striatum. Nature Neuroscience, 2016, 19, 578-586.	7.1	122
72	Striatal dopamine neurotransmission: Regulation of release and uptake. Basal Ganglia, 2016, 6, 123-148.	0.3	306

#	Article	IF	CITATIONS
73	Introducing a new journal on Parkinson's disease. Npj Parkinson's Disease, 2015, 1, 15006.	2.5	0
74	Loss of VGLUT3 Produces Circadian-Dependent Hyperdopaminergia and Ameliorates Motor Dysfunction and l-Dopa-Mediated Dyskinesias in a Model of Parkinson's Disease. Journal of Neuroscience, 2015, 35, 14983-14999.	1.7	53
75	Optogenetics enables functional analysis of human embryonic stem cell–derived grafts in a Parkinson's disease model. Nature Biotechnology, 2015, 33, 204-209.	9.4	256
76	Changes in Neuronal Dopamine Homeostasis following 1-Methyl-4-phenylpyridinium (MPP+) Exposure. Journal of Biological Chemistry, 2015, 290, 6799-6809.	1.6	47
77	Synaptic optical imaging platforms: Examining pharmacological modulation of neurotransmitter release at discrete synapses. Neuropharmacology, 2015, 98, 90-94.	2.0	10
78	Loss of Striatonigral GABAergic Presynaptic Inhibition Enables Motor Sensitization in Parkinsonian Mice. Neuron, 2015, 87, 976-988.	3.8	62
79	Presynaptic effects of levodopa and their possible role in dyskinesia. Movement Disorders, 2015, 30, 45-53.	2.2	58
80	Neuronal MHC-I expression and its implications in synaptic function, axonal regeneration and Parkinsonââ,¬â,,¢s and other brain diseases. Frontiers in Neuroanatomy, 2014, 8, 114.	0.9	102
81	Neuromelanin of the Human Substantia Nigra: An Update. Neurotoxicity Research, 2014, 25, 13-23.	1.3	191
82	iPSC-Derived Dopamine Neurons Reveal Differences between Monozygotic Twins Discordant for Parkinson's Disease. Cell Reports, 2014, 9, 1173-1182.	2.9	202
83	Neuroinflammation in Parkinson's Disease Animal Models: A Cell Stress Response or a Step in Neurodegeneration?. Current Topics in Behavioral Neurosciences, 2014, 22, 237-270.	0.8	47
84	Calcineurin determines toxic versus beneficial responses to α-synuclein. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3544-52.	3.3	102
85	The multilingual nature of dopamine neurons. Progress in Brain Research, 2014, 211, 141-164.	0.9	121
86	MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nature Communications, 2014, 5, 3633.	5.8	254
87	Calcium currents regulate dopamine autoreceptors. Brain, 2014, 137, 2113-2115.	3.7	4
88	Loss of mTOR-Dependent Macroautophagy Causes Autistic-like Synaptic Pruning Deficits. Neuron, 2014, 83, 1131-1143.	3.8	863
89	Neuronal vulnerability, pathogenesis, and Parkinson's disease. Movement Disorders, 2013, 28, 41-50.	2.2	199
90	New Fluorescent Substrate Enables Quantitative and High-Throughput Examination of Vesicular Monoamine Transporter 2 (VMAT2). ACS Chemical Biology, 2013, 8, 1947-1954.	1.6	52

#	Article	IF	CITATIONS
91	Neuronal vulnerability, pathogenesis, and Parkinson's disease. Movement Disorders, 2013, 28, 715-724.	2.2	145
92	Fluorescent dopamine tracer resolves individual dopaminergic synapses and their activity in the brain. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 870-875.	3.3	91
93	Mitochondrial abnormalities in temporal lobe of autistic brain. Neurobiology of Disease, 2013, 54, 349-361.	2.1	164
94	Interplay of LRRK2 with chaperone-mediated autophagy. Nature Neuroscience, 2013, 16, 394-406.	7.1	515
95	Visualizing Neurotransmitter Secretion at Individual Synapses. ACS Chemical Neuroscience, 2013, 4, 648-651.	1.7	32
96	APP+, a Fluorescent Analogue of the Neurotoxin MPP+, Is a Marker of Catecholamine Neurons in Brain Tissue, but Not a Fluorescent False Neurotransmitter. ACS Chemical Neuroscience, 2013, 4, 858-869.	1.7	29
97	Dual Control of Dopamine Synthesis and Release by Presynaptic and Postsynaptic Dopamine D2 Receptors. Journal of Neuroscience, 2012, 32, 9023-9034.	1.7	173
98	Regulation of Presynaptic Neurotransmission by Macroautophagy. Neuron, 2012, 74, 277-284.	3.8	286
99	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
100	How Addictive Drugs Disrupt Presynaptic Dopamine Neurotransmission. Neuron, 2011, 69, 628-649.	3.8	491
101	Neuromelanin Activates Microglia and Induces Degeneration of Dopaminergic Neurons: Implications for Progression of Parkinson's Disease. Neurotoxicity Research, 2011, 19, 63-72.	1.3	208
102	Clues to how alphaâ€synuclein damages neurons in Parkinson's disease. Movement Disorders, 2010, 25, S27-31.	2.2	59
103	Vesicular Glutamate Transport Promotes Dopamine Storage and Glutamate Corelease In Vivo. Neuron, 2010, 65, 643-656.	3.8	363
104	Development of pH-Responsive Fluorescent False Neurotransmitters. Journal of the American Chemical Society, 2010, 132, 8828-8830.	6.6	127
105	Glutamate Controls Growth Rate and Branching of Dopaminergic Axons. Journal of Neuroscience, 2009, 29, 11973-11981.	1.7	58
106	Fluorescent False Neurotransmitters Visualize Dopamine Release from Individual Presynaptic Terminals. Science, 2009, 324, 1441-1444.	6.0	184
107	Interplay between Cytosolic Dopamine, Calcium, and α-Synuclein Causes Selective Death of Substantia Nigra Neurons. Neuron, 2009, 62, 218-229.	3.8	456
108	Convergence of multiple hits that could underlie Parkinson's disease. Future Neurology, 2009, 4, 525-529.	0.9	0

#	Article	IF	CITATIONS
109	Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease. Journal of Neurochemistry, 2008, 106, 24-36.	2.1	164
110	Repeated Exposure to Methamphetamine Causes Long-Lasting Presynaptic Corticostriatal Depression that Is Renormalized with Drug Readministration. Neuron, 2008, 58, 89-103.	3.8	88
111	Dopamine-modified α-synuclein blocks chaperone-mediated autophagy. Journal of Clinical Investigation, 2008, 118, 777-88.	3.9	531
112	Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease. Trends in Neurosciences, 2007, 30, 244-250.	4.2	507
113	Parkinson's Disease: Return of an Old Prime Suspect. Neuron, 2007, 55, 8-10.	3.8	26
114	Â-Synuclein Overexpression in PC12 and Chromaffin Cells Impairs Catecholamine Release by Interfering with a Late Step in Exocytosis. Journal of Neuroscience, 2006, 26, 11915-11922.	1.7	377
115	Â-Synuclein Overexpression Increases Cytosolic Catecholamine Concentration. Journal of Neuroscience, 2006, 26, 9304-9311.	1.7	144
116	Neurotoxicity and behavioral deficits associated with Septin 5 accumulation in dopaminergic neurons. Journal of Neurochemistry, 2005, 94, 1040-1053.	2.1	65
117	Analysis of exocytotic events recorded by amperometry. Nature Methods, 2005, 2, 651-658.	9.0	310
118	Mechanisms of neurotransmitter release by amphetamines: A review. Progress in Neurobiology, 2005, 75, 406-433.	2.8	1,075
119	Antidepressants and the Monoamine Masquerade. Neuron, 2005, 46, 1-2.	3.8	20
120	Real-time decoding of dopamine concentration changes in the caudate?putamen during tonic and phasic firing. Journal of Neurochemistry, 2004, 89, 526-526.	2.1	10
121	Dopamine neurons release transmitter via a flickering fusion pore. Nature Neuroscience, 2004, 7, 341-346.	7.1	282
122	Frequency-dependent modulation of dopamine release by nicotine. Nature Neuroscience, 2004, 7, 581-582.	7.1	327
123	Neurodegeneration and neuroprotection in Parkinson disease. NeuroRx, 2004, 1, 139-154.	6.0	218
124	Impaired Degradation of Mutant Â-Synuclein by Chaperone-Mediated Autophagy. Science, 2004, 305, 1292-1295.	6.0	1,762
125	Heterosynaptic Dopamine Neurotransmission Selects Sets of Corticostriatal Terminals. Neuron, 2004, 42, 653-663.	3.8	337
126	Neurodegeneration and neuroprotection in Parkinson disease. Neurotherapeutics, 2004, 1, 139-154.	2.1	2

#	Article	IF	CITATIONS
127	Presynaptic regulation of dopaminergic neurotransmission. Journal of Neurochemistry, 2003, 87, 273-289.	2.1	172
128	Real-time decoding of dopamine concentration changes in the caudate-putamen during tonic and phasic firing. Journal of Neurochemistry, 2003, 87, 1284-1295.	2.1	232
129	Dopamine transport currents are promoted from curiosity to physiology. Trends in Neurosciences, 2003, 26, 173-176.	4.2	29
130	Glutamate Spillover in the Striatum Depresses Dopaminergic Transmission by Activating Group I Metabotropic Glutamate Receptors. Journal of Neuroscience, 2003, 23, 10585-10592.	1.7	107
131	Intracellular Patch Electrochemistry: Regulation of Cytosolic Catecholamines in Chromaffin Cells. Journal of Neuroscience, 2003, 23, 5835-5845.	1.7	126
132	Altered Dopamine Release and Uptake Kinetics in Mice Lacking D ₂ Receptors. Journal of Neuroscience, 2002, 22, 8002-8009.	1.7	161
133	Methamphetamine-Induced Degeneration of Dopaminergic Neurons Involves Autophagy and Upregulation of Dopamine Synthesis. Journal of Neuroscience, 2002, 22, 8951-8960.	1.7	307
134	Visualization of Antipsychotic Drug Binding to Living Mesolimbic Neurons Reveals D2 Receptor, Acidotropic, and Lipophilic Components. Journal of Neurochemistry, 2002, 65, 691-703.	2.1	32
135	Effects of Wild-Type and Mutated Copper/Zinc Superoxide Dismutase on Neuronal Survival and I-DOPA-Induced Toxicity in Postnatal Midbrain Culture. Journal of Neurochemistry, 2002, 69, 21-33.	2.1	61
136	Amphetamine Distorts Stimulation-Dependent Dopamine Overflow: Effects on D2 Autoreceptors, Transporters, and Synaptic Vesicle Stores. Journal of Neuroscience, 2001, 21, 5916-5924.	1.7	201
137	Proteasomal inhibition leads to formation of ubiquitin/α-synuclein-immunoreactive inclusions in PC12 cells. Journal of Neurochemistry, 2001, 78, 899-908.	2.1	253
138	Mice transgenic for exon 1 of the Huntington's disease gene display reduced striatal sensitivity to neurotoxicity induced by dopamine and 6-hydroxydopamine. European Journal of Neuroscience, 2001, 14, 1425-1435.	1.2	39
139	α-synuclein and cytosolic dopamine: Stabilizing a bad situation. Nature Medicine, 2001, 7, 1280-1282.	15.2	57
140	Quantitative and Statistical Analysis of the Shape of Amperometric Spikes Recorded from Two Populations of Cells. Journal of Neurochemistry, 2000, 74, 1086-1097.	2.1	86
141	Mice Lacking α-Synuclein Display Functional Deficits in the Nigrostriatal Dopamine System. Neuron, 2000, 25, 239-252.	3.8	1,573
142	Regulation of Quantal Size by Presynaptic Mechanisms. Reviews in the Neurosciences, 2000, 11, 159-212.	1.4	159
143	Intraneuronal dopamine-quinone synthesis: A review. Neurotoxicity Research, 1999, 1, 181-195.	1.3	237
144	Voltammetric and Pharmacological Characterization of Dopamine Release from Single Exocytotic Events at Rat Pheochromocytoma (PC12) Cells. Analytical Chemistry, 1998, 70, 3123-3130.	3.2	170

#	Article	IF	CITATIONS
145	Glial Cell Lineâ€Derived Neurotrophic Growth Factor Inhibits Apoptotic Death of Postnatal Substantia Nigra Dopamine Neurons in Primary Culture. Journal of Neurochemistry, 1998, 71, 517-525.	2.1	145
146	Presynaptic Recording of Quanta from Midbrain Dopamine Neurons and Modulation of the Quantal Size. Journal of Neuroscience, 1998, 18, 4106-4118.	1.7	274
147	Vesicular Transport Regulates Monoamine Storage and Release but Is Not Essential for Amphetamine Action. Neuron, 1997, 19, 1271-1283.	3.8	298
148	Neurotrophic Effects of <scp>l</scp> â€DOPA in Postnatal Midbrain Dopamine Neuron/Cortical Astrocyte Cocultures. Journal of Neurochemistry, 1997, 69, 1398-1408.	2.1	116
149	<scp>l</scp> â€3,4â€Dihydroxyphenylalanine Increases the Quantal Size of Exocytotic Dopamine Release In Vitro. Journal of Neurochemistry, 1996, 66, 629-636.	2.1	120
150	Increased Superoxide Dismutase Activity Improves Survival of Cultured Postnatal Midbrain Neurons. Journal of Neurochemistry, 1996, 67, 1383-1392.	2.1	43
151	Amphetamine and Other Weak Bases Act to Promote Reverse Transport of Dopamine in Ventral Midbrain Neurons. Journal of Neurochemistry, 1993, 60, 527-535.	2.1	273
152	Amperometric Recording of Amphetamine-Induced Dopamine Efflux. , 0, , 191-201.		0