
Alexey Khakalo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1260114/publications.pdf Version: 2024-02-01

Διέχεν Κηλκλιο

#	Article	IF	CITATIONS
1	Carboxymethyl Cellulose (CMC) Optical Fibers for Environment Sensing and Short-Range Optical Signal Transmission. ACS Applied Materials & Interfaces, 2022, 14, 3315-3323.	8.0	6
2	Multilayers of Renewable Nanostructured Materials with High Oxygen and Water Vapor Barriers for Food Packaging. ACS Applied Materials & Interfaces, 2022, 14, 30236-30245.	8.0	17
3	Manufacture of all-wood sawdust-based particle board using ionic liquid-facilitated fusion process. Wood Science and Technology, 2021, 55, 331-349.	3.2	13
4	Cross-Linked and Surface-Modified Cellulose Acetate as a Cover Layer for Paper-Based Electrochromic Devices. ACS Applied Polymer Materials, 2021, 3, 2393-2401.	4.4	8
5	Production of High-Solid-Content Fire-Retardant Phosphorylated Cellulose Microfibrils. ACS Sustainable Chemistry and Engineering, 2021, 9, 12365-12375.	6.7	18
6	Rheological behavior of high consistency enzymatically fibrillated cellulose suspensions. Cellulose, 2021, 28, 2087-2104.	4.9	23
7	Bicomponent Cellulose Fibrils and Minerals Afford Wicking Channels Stencil-Printed on Paper for Rapid and Reliable Fluidic Platforms. ACS Applied Polymer Materials, 2021, 3, 5536-5546.	4.4	3
8	Water sorption properties of regenerated sulfate pulp paper treated with ionic liquid [EMIM]OAc. Journal of Wood Chemistry and Technology, 2020, 40, 306-316.	1.7	1
9	High-Throughput Tailoring of Nanocellulose Films: From Complex Bio-Based Materials to Defined Multifunctional Architectures. ACS Applied Bio Materials, 2020, 3, 7428-7438.	4.6	18
10	Vapour-assisted roll-to-roll nanoimprinting of micropillars on nanocellulose films. Microelectronic Engineering, 2020, 225, 111258.	2.4	6
11	Cogrinding Wood Fibers and Tannins: Surfactant Effects on the Interactions and Properties of Functional Films for Sustainable Packaging Materials. Biomacromolecules, 2020, 21, 1865-1874.	5.4	27
12	Delignification and Ionic Liquid Treatment of Wood toward Multifunctional High-Performance Structural Materials. ACS Applied Materials & Interfaces, 2020, 12, 23532-23542.	8.0	42
13	Soft cellulose II nanospheres: sol–gel behaviour, swelling and material synthesis. Nanoscale, 2019, 11, 17773-17781.	5.6	30
14	Anti-oxidative and UV-absorbing biohybrid film of cellulose nanofibrils and tannin extract. Food Hydrocolloids, 2019, 92, 208-217.	10.7	69
15	All-Wood Composite Material by Partial Fiber Surface Dissolution with an Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2019, 7, 3195-3202.	6.7	39
16	The effect of oxyalkylation and application of polymer dispersions on the thermoformability and extensibility of paper. Carbohydrate Polymers, 2018, 186, 411-419.	10.2	2
17	Protein-mediated interfacial adhesion in composites of cellulose nanofibrils and polylactide: Enhanced toughness towards material development. Composites Science and Technology, 2018, 160, 145-151.	7.8	23
18	Conversion of paper to film by ionic liquids: manufacturing process and properties. Cellulose, 2018, 25, 6107-6119.	4.9	11

ALEXEY KHAKALO

#	Article	IF	CITATIONS
19	Supramolecular assemblies of lignin into nano- and microparticles. MRS Bulletin, 2017, 42, 371-378.	3.5	70
20	Layer-by-layer assembled hydrophobic coatings for cellulose nanofibril films and textiles, made of polylysine and natural wax particles. Carbohydrate Polymers, 2017, 173, 392-402.	10.2	81
21	Protein Adsorption Tailors the Surface Energies and Compatibility between Polylactide and Cellulose Nanofibrils. Biomacromolecules, 2017, 18, 1426-1433.	5.4	20
22	In-Plane Compression and Biopolymer Permeation Enable Super-stretchable Fiber Webs for Thermoforming toward 3-D Structures. ACS Sustainable Chemistry and Engineering, 2017, 5, 9114-9125.	6.7	9
23	Mechanically-induced dimensional extensibility of fibers towards tough fiber networks. Cellulose, 2017, 24, 191-205.	4.9	21
24	The effect of chemical additives on the strength, stiffness and elongation potential of paper. Nordic Pulp and Paper Research Journal, 2017, 32, 324-335.	0.7	20
25	Effect of PEG–PDMAEMA Block Copolymer Architecture on Polyelectrolyte Complex Formation with Heparin. Biomacromolecules, 2016, 17, 2891-2900.	5.4	37
26	Improving the extensibility of paper: Sequential spray addition of gelatine and agar. Nordic Pulp and Paper Research Journal, 2015, 30, 452-460.	0.7	16
27	Using gelatin protein to facilitate paper thermoformability. Reactive and Functional Polymers, 2014, 85, 175-184.	4.1	32