Kei Wada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1259865/publications.pdf

Version: 2024-02-01

361413 377865 1,328 66 20 34 citations h-index g-index papers 67 67 67 1485 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Degenerate PCR Targeting the Major Capsid Protein Gene of HcRNAV and Related Viruses. Microbes and Environments, 2022, 37, n/a.	1.6	2
2	Evidence for dynamic in vivo interconversion of the conformational states of IscU during iron–sulfur cluster biosynthesis. Molecular Microbiology, 2021, 115, 807-818.	2.5	6
3	Pathological Features of Ruptured Coronary Plaque and Thrombus Interfaces: Fibrin and von Willebrand Factor as Platelet Scaffolds on Rupture Sites. Thrombosis and Haemostasis, 2021, 121, 234-241.	3.4	5
4	Crystal structures of hydroxymethylbilane synthase complexed with a substrate analog: a single substrate-binding site for four consecutive condensation steps. Biochemical Journal, 2021, 478, 1023-1042.	3.7	9
5	Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
6	Chronological distribution of dinoflagellate-infecting RNA virus in marine sediment core. Science of the Total Environment, 2021, 770, 145220.	8.0	4
7	Study of Structural Basis for Molecular Mechanisms of Cellular Redox Control. Nihon Kessho Gakkaishi, 2021, 63, 105-112.	0.0	O
8	Super-activator variants of the cyanobacterial transcriptional regulator ChIR essential for tetrapyrrole biosynthesis under low oxygen conditions. Bioscience, Biotechnology and Biochemistry, 2020, 84, 481-490.	1.3	0
9	Recent Advances in the Understanding of the Reaction Chemistries of the Heme Catabolizing Enzymes HO and BVR Based on High Resolution Protein Structures. Current Medicinal Chemistry, 2020, 27, 3499-3518.	2.4	7
10	Crystal structure of phytochromobilin synthase in complex with biliverdin $IX\hat{l}_{\pm}$, a key enzyme in the biosynthesis of phytochrome. Journal of Biological Chemistry, 2020, 295, 771-782.	3.4	2
11	Crystal structure of phytochromobilin synthase in complex with biliverdin IXα, a key enzyme in the biosynthesis of phytochrome. Journal of Biological Chemistry, 2020, 295, 771-782.	3.4	6
12	Identification of IscU residues critical for de novo iron–sulfur cluster assembly. Molecular Microbiology, 2019, 112, 1769-1783.	2.5	13
13	Crystal structure of a NADPH ytochrome P450 oxidoreductase (CYPOR) and heme oxygenase 1 fusion protein implies a conformational change in CYPOR upon NADPH / NADP + binding. FEBS Letters, 2019, 593, 868-875.	2.8	9
14	Bilin-metabolizing enzymes: site-specific reductions catalyzed by two different type of enzymes. Current Opinion in Structural Biology, 2019, 59, 73-80.	5.7	11
15	Crystal Growth of a Bilin Reductase PcyA I86D Mutant–Substrate Complex for Neutron Crystallography. Crystal Growth and Design, 2018, 18, 5174-5181.	3.0	2
16	Structure-Dependent Binding of hnRNPA1 to Telomere RNA. Journal of the American Chemical Society, 2017, 139, 7533-7539.	13.7	48
17	Mapping the key residues of SufB and SufD essential for biosynthesis of iron-sulfur clusters. Scientific Reports, 2017, 7, 9387.	3.3	31
18	Synthesis and evaluation of the inhibitory activity of the four stereoisomers of the potent and selective human Î ³ -glutamyl transpeptidase inhibitor GGsTop. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4920-4924.	2.2	4

#	Article	IF	CITATIONS
19	A substrate-bound structure of cyanobacterial biliverdin reductase identifies stacked substrates as critical for activity. Nature Communications, 2017, 8, 14397.	12.8	9
20	Atomicâ€resolution structure of the phycocyanobilin:ferredoxin oxidoreductase I86D mutant in complex with fully protonated biliverdin. FEBS Letters, 2016, 590, 3425-3434.	2.8	9
21	Phosphonate-based irreversible inhibitors of human î³-glutamyl transpeptidase (GGT). GGsTop is a non-toxic and highly selective inhibitor with critical electrostatic interaction with an active-site residue Lys562 for enhanced inhibitory activity. Bioorganic and Medicinal Chemistry, 2016, 24, 5340-5352.	3.0	29
22	The crystal structure of isoniazidâ€bound KatG catalaseâ€peroxidase from <i>SynechococcusÂelongatus </i> <scp>PCC</scp> 7942. FEBS Journal, 2015, 282, 54-64.	4.7	20
23	Insights into the Proton Transfer Mechanism of a Bilin Reductase PcyA Following Neutron Crystallography. Journal of the American Chemical Society, 2015, 137, 5452-5460.	13.7	42
24	Functional Dynamics Revealed by the Structure of the SufBCD Complex, a Novel ATP-binding Cassette (ABC) Protein That Serves as a Scaffold for Iron-Sulfur Cluster Biogenesis. Journal of Biological Chemistry, 2015, 290, 29717-29731.	3.4	77
25	Crystal structure of the catalase–peroxidase KatG W78F mutant from <i>Synechococcus elongatus</i> PCC7942 in complex with the antitubercular proâ€drug isoniazid. FEBS Letters, 2015, 589, 131-137.	2.8	7
26	The 2.2â€Ã resolution structure of the catalase-peroxidase KatG fromSynechococcus elongatusPCC7942. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 288-293.	0.8	10
27	Structure of < i>Bacillus subtilis < i > \hat{i} -glutamyltranspeptidase in complex with acivicin: diversity of the binding mode of a classical and electrophilic active-site-directed glutamate analogue. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 607-614.	2.5	14
28	Structural basis for the electron transfer from an open form of NADPH-cytochrome P450 oxidoreductase to heme oxygenase. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2524-2529.	7.1	70
29	Glutathione-analogous peptidyl phosphorus esters as mechanism-based inhibitors of \hat{l}^3 -glutamyl transpeptidase for probing cysteinyl-glycine binding site. Bioorganic and Medicinal Chemistry, 2014, 22, 1176-1194.	3.0	20
30	Cysteine 295 indirectly affects Ni coordination of carbon monoxide dehydrogenase-II C-cluster. Biochemical and Biophysical Research Communications, 2013, 441, 13-17.	2.1	23
31	Thermal Denaturation and Renaturation of γ-Glutamyltranspeptidase of <i>Escherichia coli</i> Bioscience, Biotechnology and Biochemistry, 2013, 77, 409-412.	1.3	6
32	\hat{I}^3 -Glutamyl Transpeptidase and its Precursor. , 2013, , 3712-3719.		1
33	Structure and Reaction Mechanism of \hat{l}^3 -Glutamyltranspeptidases. Nihon Kessho Gakkaishi, 2013, 55, 340-344.	0.0	0
34	Establishment of a Bacterial Expression System and Immunoassay Platform for the Major Capsid Protein of HcRNAV, a Dinoflagellate-Infecting RNA Virus. Microbes and Environments, 2012, 27, 483-489.	1.6	3
35	Expression, purification and preliminary X-ray crystallographic analysis of cyanobacterial biliverdin reductase. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 313-317.	0.7	4
36	A Simple, Large-Scale Overexpression Method of Deriving Carbon Monoxide Dehydrogenase II from Thermophilic BacteriumCarboxydothermus hydrogenoformans. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1392-1394.	1.3	7

#	Article	IF	Citations
37	Mapping of Protein-Protein Interaction Sites in the Plant-Type [2Fe-2S] Ferredoxin. PLoS ONE, 2011, 6, e21947.	2.5	18
38	鉄硫黄ã,¯ãƒ©ã,¹ã,¿ãƒ¼ç"Ÿå•̂æ^マã,∙ãƒŠãƒªãƒ¼ã®æ§‹é€ã•作動機構. Kagaku To Seibutsu, 2010, 48,	8 24 0 -838.	1
39	Enhancement of glutarylâ€ 7 â€aminocephalosporanic acid acylase activity of γâ€glutamyltranspeptidase of <i>Bacillus subtilis</i> . Biotechnology Journal, 2010, 5, 829-837.	3.5	10
40	Crystal structure of the halotolerant γâ€glutamyltranspeptidase from <i>Bacillusâ€∫subtilis</i> in complex with glutamate reveals a unique architecture of the solventâ€exposed catalytic pocket. FEBS Journal, 2010, 277, 1000-1009.	4.7	53
41	One residue substitution in PcyA leads to unexpected changes in tetrapyrrole substrate binding. Biochemical and Biophysical Research Communications, 2010, 402, 373-377.	2.1	4
42	Structural and Functional Analyses of the Proteins Involved in the Iron-Sulfur Cluster Biosynthesis. Nihon Kessho Gakkaishi, 2010, 52, 174-183.	0.0	0
43	Molecular Dynamism of Fe–S Cluster Biosynthesis Implicated by the Structure of the SufC2–SufD2 Complex. Journal of Molecular Biology, 2009, 387, 245-258.	4.2	39
44	Crystal Structures of Î ³ -Glutamyltranspeptidase in Complex with Azaserine and Acivicin: Novel Mechanistic Implication for Inhibition by Glutamine Antagonists. Journal of Molecular Biology, 2008, 380, 361-372.	4.2	47
45	The Asymmetric Trimeric Architecture of [2Fe–2S] IscU: Implications for Its Scaffolding during Iron–Sulfur Cluster Biosynthesis. Journal of Molecular Biology, 2008, 383, 133-143.	4.2	88
46	Improvement of the Glutaryl-7-Aminocephalosporanic Acid Acylase Activity of a Bacterial \hat{I}^3 -Glutamyltranspeptidase. Applied and Environmental Microbiology, 2008, 74, 4983-4983.	3.1	2
47	Improvement of the Glutaryl-7-Aminocephalosporanic Acid Acylase Activity of a Bacterial Î ³ -Glutamyltranspeptidase. Applied and Environmental Microbiology, 2008, 74, 3400-3409.	3.1	21
48	Crystal Structure of the \hat{I}^3 -Glutamyltranspeptidase Precursor Protein from Escherichia coli. Journal of Biological Chemistry, 2007, 282, 2433-2439.	3.4	73
49	Crystal structures of CbiL, a methyltransferase involved in anaerobic vitamin B12 biosynthesis, and CbiL in complex with S-adenosylhomocysteineâ€∫â~â€∫implications for the reaction mechanism. FEBS Journal, 2007, 274, 563-573.	4.7	9
50	Crystal structure of Escherichia coli Suf C, an ABC-type ATPase component of the SUF iron-sulfur cluster assembly machinery. FEBS Letters, 2006, 580, 137-143.	2.8	39
51	Crystal Structures of BchU, a Methyltransferase Involved in Bacteriochlorophyll c Biosynthesis, and its Complex with S-adenosylhomocysteine: Implications for Reaction Mechanism. Journal of Molecular Biology, 2006, 360, 839-849.	4.2	34
52	Structure of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase fromSynechococcusPCC7942 complexed with NADP. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 315-319.	0.7	11
53	Structure of apo-glyceraldehyde-3-phosphate dehydrogenase fromSynechococcusPCC7942. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 727-730.	0.7	5
54	Crystal structures of \hat{A} -glutamyltranspeptidase from Escherichia coli, a key enzyme in glutathione metabolism, and its reaction intermediate. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6471-6476.	7.1	156

#	Article	IF	CITATION
55	Crystallization and preliminary X-ray diffraction study of BchU, a methyltransferase fromChlorobium tepiduminvolved in bacteriochlorophyllcbiosynthesis. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 712-714.	0.7	3
56	Structural Basis for Thermostability of Endo-1,5- \hat{l} ±- l -Arabinanase from Bacillusthermodenitrificans TS-3. Journal of Biochemistry, 2005, 137, 587-592.	1.7	32
57	ldentification of Variant Molecules ofBacillus thermoproteolyticusFerredoxin:Â Crystal Structure Reveals Bound Coenzyme A and an Unexpected [3Feâ^'4S] Cluster Associated with a Canonical [4Feâ^'4S] Ligand Motifâ€,‡. Biochemistry, 2005, 44, 12402-12410.	2.5	14
58	Crystal structure of Escherichia coli Suf A involved in biosynthesis of iron-sulfur clusters: Implications for a functional dimer. FEBS Letters, 2005, 579, 6543-6548.	2.8	42
59	Crystal Structure of Chloroplastic Ascorbate Peroxidase from Tobacco Plants and Structural Insights into its Instability. Journal of Biochemistry, 2003, 134, 239-244.	1.7	45
60	Crystallization and preliminary X-ray diffraction studies of catalase–peroxidase fromSynechococcusPCC 7942. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 157-159.	2.5	33
61	Crystallization and preliminary X-ray diffraction analysis of chloroplastic ascorbate peroxidase of tobacco plants. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 559-561.	2.5	5
62	Characterization of monoclonal antibodies against ascorbate peroxidase isoenzymes: purification and epitope-mapping using immunoaffinity column chromatography. Biochimica Et Biophysica Acta - General Subjects, 2001, 1526, 168-174.	2.4	16
63	Crystallization and preliminary X-ray analysis of a novel pectolytic enzyme, polymethoxygalacturonase SX1 fromTrichosporon penicillatum. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 457-458.	2.5	0
64	Purification, crystallization and preliminary X-ray diffraction analysis of the fructose-1,6-/sedoheptulose-1,7-bisphosphatase of Synechococcus PCC 7942. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 454-456.	2.5	1
65	Crystallization and preliminary X-ray diffraction analysis of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase ofSynechococcusPCC 7942. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 879-881.	2.5	3
66	Crystallization and preliminary X-ray analysis of endopolygalacturonase SE1 fromTrichosporon penicillatum. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 1668-1669.	2.5	2