Rui Zhu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1259841/rui-zhu-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

153 papers

11,858 citations

46 h-index 108 g-index

167 ext. papers

13,651 ext. citations

11.5 avg, IF

6.72 L-index

#	Paper	IF	Citations
153	Passivation principle of deep-level defects: a study of SnZn defects in kesterites for high-efficient solar cells. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 2849-2855	13	1
152	Chemical Polishing of Perovskite Surface Enhances Photovoltaic Performances <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	11
151	Photoprotective energy quenching in the red alga Porphyridium purpureum occurs at the core antenna of the photosystem II but not at its reaction center <i>Journal of Biological Chemistry</i> , 2022 , 1017	′§3 ¹	О
150	Van der Waals integration of high-liperovskite oxides and two-dimensional semiconductors. <i>Nature Electronics</i> , 2022 , 5, 233-240	28.4	13
149	Self-Assembled Porphyrin Nanoleaves with Unique Crossed Transportation of Photogenerated Carriers to Enhance Photocatalytic Hydrogen Production <i>Nano Letters</i> , 2021 ,	11.5	5
148	Mechanochemistry Advances High-Performance Perovskite Solar Cells. Advanced Materials, 2021 , e2107	7 <u>4</u> 20	13
147	Dielectric screening in perovskite photovoltaics. <i>Nature Communications</i> , 2021 , 12, 2479	17.4	22
146	Perovskite Solar Cells for Space Applications: Progress and Challenges. <i>Advanced Materials</i> , 2021 , 33, e2006545	24	53
145	Overcoming the performance deadlock by ideal-bandgap perovskites. <i>Matter</i> , 2021 , 4, 1445-1447	12.7	
144	Interfacial stabilization for inverted perovskite solar cells with long-term stability. <i>Science Bulletin</i> , 2021 , 66, 991-1002	10.6	15
143	Plasma Oxidized TiCT MXene as Electron Transport Layer for Efficient Perovskite Solar Cells. <i>ACS Applied Materials & District Material</i>	9.5	13
142	Li-based selenized Cu2ZnSnS4 surface: Possible route to overcoming voc-deficit of kesterite solar cells. <i>Applied Physics Letters</i> , 2021 , 118, 252106	3.4	2
141	Multiple-Defect Management for Efficient Perovskite Photovoltaics. ACS Energy Letters, 2021, 6, 2404-2	2 4 021	22
140	Linear Relationship between the Dielectric Constant and Band Gap in Low-Dimensional Mixed-Halide Perovskites. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 14883-14890	3.8	2
139	Torsional bandgap switching in metamaterials with compressionEorsion interacted origami resonators. <i>Journal of Applied Physics</i> , 2021 , 130, 045105	2.5	7
138	Surface-anchoring zwitterionic antioxidant enables efficient, stable, and scalable all-perovskite tandem solar cells. <i>Science China Chemistry</i> , 2021 , 64, 3-4	7.9	1
137	Buried Interfaces in Halide Perovskite Photovoltaics. <i>Advanced Materials</i> , 2021 , 33, e2006435	24	83

(2020-2021)

136	Adaptive Phase Correction for Phase Measuring Deflectometry Based on Light Field Modulation. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2021 , 70, 1-10	5.2	1
135	Optimizing Vertical Crystallization for Efficient Perovskite Solar Cells by Buried Composite Layers. <i>Solar Rrl</i> , 2021 , 5, 2100457	7.1	3
134	Quantum efficiency, intrinsic emittance, and response time measurements of a titanium nitride photocathode. <i>Physical Review Accelerators and Beams</i> , 2021 , 24,	1.8	2
133	The structural stability and defect-tolerance of ionic spinel semiconductors for high-efficiency solar cells. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 14566-14575	13	4
132	Green Solution-Bathing Process for Efficient Large-Area Planar Perovskite Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 24905-24912	9.5	12
131	Dopant-free hole transporting materials with supramolecular interactions and reverse diffusion for efficient and modular p-i-n perovskite solar cells. <i>Science China Chemistry</i> , 2020 , 63, 987-996	7.9	25
130	Designing Hole Transport Materials with High Hole Mobility and Outstanding Interface Properties for Perovskite Solar Cells. <i>ChemPhysChem</i> , 2020 , 21, 1866-1872	3.2	О
129	High-Performance CsPbixBr3-x All-Inorganic Perovskite Solar Cells with Efficiency over 18% via Spontaneous Interfacial Manipulation. <i>Advanced Functional Materials</i> , 2020 , 30, 2000457	15.6	71
128	Tailoring Perovskite Adjacent Interfaces by Conjugated Polyelectrolyte for Stable and Efficient Solar Cells. <i>Solar Rrl</i> , 2020 , 4, 2000060	7.1	14
127	Non-resonant metasurface for broadband elastic wave mode splitting. <i>Applied Physics Letters</i> , 2020 , 116, 171903	3.4	15
126	Low-Dimensional Contact Layers for Enhanced Perovskite Photodiodes. <i>Advanced Functional Materials</i> , 2020 , 30, 2001692	15.6	15
125	Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides. <i>Research</i> , 2020 , 2020, 9085782	7.8	25
124	Investigation of post-thermal annealing-induced enhancement in photovoltaic performance for squaraine-based organic solar cells. <i>Frontiers of Materials Science</i> , 2020 , 14, 81-88	2.5	
123	Minimizing non-radiative recombination losses in perovskite solar cells. <i>Nature Reviews Materials</i> , 2020 , 5, 44-60	73.3	428
122	Improving Efficiency and Stability of Perovskite Solar Cells Enabled by A Near-Infrared-Absorbing Moisture Barrier. <i>Joule</i> , 2020 , 4, 1575-1593	27.8	46
121	Molecular Engineering of Hexaazatriphenylene Derivatives toward More Efficient Electron-Transporting Materials for Inverted Perovskite Solar Cells. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2020 , 12, 38222-38231	9.5	13
120	Reduced bilateral recombination by functional molecular interface engineering for efficient inverted perovskite solar cells. <i>Nano Energy</i> , 2020 , 78, 105249	17.1	27
119	Superior Carrier Lifetimes Exceeding 6 µs in Polycrystalline Halide Perovskites. <i>Advanced Materials</i> , 2020 , 32, e2002585	24	64

118	Surface modification induced by perovskite quantum dots for triple-cation perovskite solar cells. Nano Energy, 2020 , 67, 104189	17.1	49
117	Modification of TiO Nanoparticles with Organodiboron Molecules Inducing Stable Surface Ti Complex. <i>IScience</i> , 2019 , 20, 195-204	6.1	14
116	Perovskite solar cell towards lower toxicity: a theoretical study of physical lead reduction strategy. <i>Science Bulletin</i> , 2019 , 64, 1255-1261	10.6	39
115	Introducing pyridyl into electron transport materials plays a key role in improving electron mobility and interface properties for inverted perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 16304-16312	13	6
114	Study of damage generation induced by focused helium ion beam in silicon. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2019 , 37, 031804	1.3	10
113	Improving the Stability of Metal Halide Perovskite Quantum Dots by Encapsulation. <i>Advanced Materials</i> , 2019 , 31, e1900682	24	146
112	Zn-O Dual-Spin Surface State Formation by Modification of ZnO Nanoparticles with Diboron Compounds. <i>Langmuir</i> , 2019 , 35, 14173-14179	4	5
111	Theory and Realization of Nonresonant Anisotropic Singly Polarized Solids Carrying Only Shear Waves. <i>Physical Review Applied</i> , 2019 , 12,	4.3	10
110	Synergy of Electron Transfer and Charge Transfer in the Control of Photodynamic Behavior of Coordination Polymers. <i>Chemistry - A European Journal</i> , 2019 , 25, 13152-13156	4.8	13
109	Diindolotriazatruxene-Based Hole-Transporting Materials for High-Efficiency Planar Perovskite Solar Cells. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 11, 45717-45725	9.5	15
108	Research progress of solution processed all-inorganic perovskite solar cell. <i>Wuli Xuebao/Acta Physica Sinica</i> , 2019 , 68, 158806	0.6	1
107	Mixed-cation perovskite solar cells in space. <i>Science China: Physics, Mechanics and Astronomy</i> , 2019 , 62, 1	3.6	85
106	Modular metamaterials composed of foldable obelisk-like units with reprogrammable mechanical behaviors based on multistability. <i>Scientific Reports</i> , 2019 , 9, 18812	4.9	3
105	MoS Memtransistors Fabricated by Localized Helium Ion Beam Irradiation. ACS Nano, 2019 , 13, 14262-1	1427.3	55
104	A peri-Xanthenoxanthene Centered Columnar-Stacking Organic Semiconductor for Efficient, Photothermally Stable Perovskite Solar Cells. <i>Chemistry - A European Journal</i> , 2019 , 25, 945-948	4.8	16
103	Flexible Photovoltaic Systems 2018 , 105-137		
102	Single crystalline SmB6 nanowires for self-powered, broadband photodetectors covering mid-infrared. <i>Applied Physics Letters</i> , 2018 , 112, 162106	3.4	6
101	Phototriggered Mechanical Movement in A Bipyridinium-based Coordination Polymer Powered by Electron Transfer. <i>Inorganic Chemistry</i> , 2018 , 57, 2724-2729	5.1	12

(2018-2018)

100	Plasmonic-Functionalized Broadband Perovskite Photodetector. <i>Advanced Optical Materials</i> , 2018 , 6, 1701271	8.1	63
99	Confined-path interference suppressed quantum correction on weak antilocalization effect in a BiSbTeSe2 topological insulator. <i>Applied Physics Letters</i> , 2018 , 112, 032102	3.4	6
98	N-Annulated Perylene-Based Hole Transporters for Perovskite Solar Cells: The Significant Influence of Lateral Substituents. <i>ChemSusChem</i> , 2018 , 11, 672-680	8.3	17
97	Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells. <i>Nano Energy</i> , 2018 , 49, 411-418	17.1	128
96	Bipyridinium-Bearing Multi-stimuli Responsive Chromic Material with High Stability. <i>Crystal Growth and Design</i> , 2018 , 18, 3236-3243	3.5	32
95	Perovskite Solar Cells: Stable Formamidinium-Based Perovskite Solar Cells via In Situ Grain Encapsulation (Adv. Energy Mater. 22/2018). <i>Advanced Energy Materials</i> , 2018 , 8, 1870101	21.8	1
94	Perovskite Single-Crystal Microarrays for Efficient Photovoltaic Devices. <i>Chemistry of Materials</i> , 2018 , 30, 4590-4596	9.6	21
93	Patterned Perovskites for Optoelectronic Applications. <i>Small Methods</i> , 2018 , 2, 1800110	12.8	42
92	Raman Signatures of Broken Inversion Symmetry and In-Plane Anisotropy in Type-II Weyl Semimetal Candidate TaIrTe. <i>Advanced Materials</i> , 2018 , 30, e1706402	24	37
91	Atomic-Scale Probing of Reversible Li Migration in 1T-VSe and the Interactions between Interstitial V and Li. <i>Nano Letters</i> , 2018 , 18, 6094-6099	11.5	12
90	Robust Nanoporous Supramolecular Network Through Charge-Transfer Interaction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 43987-43992	9.5	5
89	Diboron-Assisted Interfacial Defect Control Strategy for Highly Efficient Planar Perovskite Solar Cells. <i>Advanced Materials</i> , 2018 , 30, e1805085	24	101
88	Increase of intrinsic emittance induced by multiphoton photoemission from copper cathodes illuminated by femtosecond laser pulses. <i>AIP Advances</i> , 2018 , 8, 055225	1.5	5
87	Control of E stacking of Dithienopyrrole-Based, Hole-Transporting Materials via Lateral Substituents for High-Efficiency Perovskite Solar Cells. <i>ACS Photonics</i> , 2018 , 5, 4694-4701	6.3	15
86	Nitrogen substitution improves the mobility and stability of electron transport materials for inverted perovskite solar cells. <i>Nanoscale</i> , 2018 , 10, 17873-17883	7.7	18
85	Improved Efficiency of Inverted Perovskite Solar Cells Via Surface Plasmon Resonance Effect of Au@PSS Core-Shell Tetrahedra Nanoparticles. <i>Solar Rrl</i> , 2018 , 2, 1800061	7.1	17
84	Stable Formamidinium-Based Perovskite Solar Cells via In Situ Grain Encapsulation. <i>Advanced Energy Materials</i> , 2018 , 8, 1800232	21.8	59
83	Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. <i>Science</i> , 2018 , 360, 1442-1446	33.3	915

82	Applications of cesium in the perovskite solar cells. <i>Journal of Semiconductors</i> , 2017 , 38, 011003	2.3	23
81	Pinhole-Free Hybrid Perovskite Film with Arbitrarily-Shaped Micro-Patterns for Functional Optoelectronic Devices. <i>Nano Letters</i> , 2017 , 17, 3563-3569	11.5	37
80	In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI] cage nanoparticles. <i>Nature Communications</i> , 2017 , 8, 15688	17.4	147
79	Fabrication of compact and stable perovskite films with optimized precursor composition in the fast-growing procedure. <i>Science China Materials</i> , 2017 , 60, 608-616	7.1	11
78	The intrinsic properties of FA(1☑)MAxPbI3 perovskite single crystals. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 8537-8544	13	110
77	Dual-Source Precursor Approach for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells. <i>Advanced Materials</i> , 2017 , 29, 1604758	24	123
76	High-Performance Formamidinium-Based Perovskite Solar Cells via Microstructure-Mediated £to- Phase Transformation. <i>Chemistry of Materials</i> , 2017 , 29, 3246-3250	9.6	79
75	Spin-polarized surface state transport in a topological Kondo insulator SmB6 nanowire. <i>Physical Review B</i> , 2017 , 95,	3.3	8
74	Interplay between topological surface states and superconductivity in SmB6/NbN tunnel junctions. <i>Physical Review B</i> , 2017 , 96,	3.3	2
73	Polymer Solar Cells: High-Performance Polymer Solar Cells Based on a Wide-Bandgap Polymer Containing Pyrrolo[3,4-f]benzotriazole-5,7-dione with a Power Conversion Efficiency of 8.63% (Adv. Sci. 9/2016). <i>Advanced Science</i> , 2016 , 3,	13.6	78
72	Efficient perovskite solar cells by metal ion doping. Energy and Environmental Science, 2016, 9, 2892-290) \$5.4	301
71	Charge-Carrier Balance for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells. <i>Advanced Materials</i> , 2016 , 28, 10718-10724	24	170
70	Organic Solar Cells: Multi-Length Scaled Silver Nanowire Grid for Application in Efficient Organic Solar Cells (Adv. Funct. Mater. 27/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 4806-4806	15.6	3
69	High-Performance Inverted Planar Heterojunction Perovskite Solar Cells Based on Lead Acetate Precursor with Efficiency Exceeding 18%. <i>Advanced Functional Materials</i> , 2016 , 26, 3508-3514	15.6	159
68	Multi-Length Scaled Silver Nanowire Grid for Application in Efficient Organic Solar Cells. <i>Advanced Functional Materials</i> , 2016 , 26, 4822-4828	15.6	42
67	Mesoporous PbI2 Scaffold for High-Performance Planar Heterojunction Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2016 , 6, 1501890	21.8	102
66	Inverted Perovskite Solar Cells: Progresses and Perspectives. Advanced Energy Materials, 2016, 6, 16004	57 .8	294
65	Perovskite Solar Cells: High-Performance Inverted Planar Heterojunction Perovskite Solar Cells Based on Lead Acetate Precursor with Efficiency Exceeding 18% (Adv. Funct. Mater. 20/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 3551-3551	15.6	6

(2012-2016)

64	High-Performance Polymer Solar Cells Based on a Wide-Bandgap Polymer Containing Pyrrolo[3,4-]benzotriazole-5,7-dione with a Power Conversion Efficiency of 8.63. <i>Advanced Science</i> , 2016 , 3, 1600032	13.6	57
63	Efficient and low-temperature processed perovskite solar cells based on a cross-linkable hybrid interlayer. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 18483-18491	13	50
62	An Ell-in-onelmesh-typed integrated energy unit for both photoelectric conversion and energy storage in uniform electrochemical system. <i>Nano Energy</i> , 2015 , 13, 670-678	17.1	47
61	Fast-growing procedure for perovskite films in planar heterojunction perovskite solar cells. <i>Chinese Chemical Letters</i> , 2015 , 26, 1518-1521	8.1	16
60	Strain Loading Mode Dependent Bandgap Deformation Potential in ZnO Micro/Nanowires. <i>ACS Nano</i> , 2015 , 9, 11960-7	16.7	28
59	An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces. <i>Light:</i> Science and Applications, 2015 , 4, e302-e302	16.7	43
58	Large tunable linear magnetoresistance in gold nanoparticle decorated graphene. <i>Applied Physics Letters</i> , 2014 , 105, 143103	3.4	10
57	Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. <i>ACS Nano</i> , 2014 , 8, 10161-7	16.7	209
56	Outermost tensile strain dominated exciton emission in bending CdSe nanowires. <i>Science China Materials</i> , 2014 , 57, 26-33	7.1	5
55	Modifying optical properties of ZnO nanowires via strain-gradient. <i>Frontiers of Physics</i> , 2013 , 8, 509-51.	5 3.7	9
54	Facile synthesis and optical properties of ultrathin Cu-doped ZnSe nanorods. <i>CrystEngComm</i> , 2013 , 15, 10495	3.3	9
53	Formation mechanism of homo-epitaxial morphology on ZnO (000 \oplus 1) polar surfaces. <i>CrystEngComm</i> , 2013 , 15, 4249	3.3	2
52	Surface coating effect on field emission performance of ZnO nanowires. <i>Applied Physics A: Materials Science and Processing</i> , 2012 , 106, 557-562	2.6	
51	A 3-dimensional spiro-functionalized platinum(II) complex to suppress intermolecular Hand PtIIIPt supramolecular interactions for a high-performance electrophosphorescent device. <i>Chemical Communications</i> , 2012 , 48, 3854-6	5.8	37
50	Silver nanowire composite window layers for fully solution-deposited thin-film photovoltaic devices. <i>Advanced Materials</i> , 2012 , 24, 5499-504	24	111
49	Solution-processed flexible transparent conductors composed of silver nanowire networks embedded in indium tin oxide nanoparticle matrices. <i>Nano Research</i> , 2012 , 5, 805-814	10	124
48	Polymer solar cells. <i>Nature Photonics</i> , 2012 , 6, 153-161	33.9	3621
47	Visibly transparent polymer solar cells produced by solution processing. <i>ACS Nano</i> , 2012 , 6, 7185-90	16.7	434

Highly Efficient Nanoporous TiO2-Polythiophene Hybrid Solar Cells Based on Interfacial

Modification Using a Metal-Free Organic Dye. Advanced Materials, 2009, 21, 994-1000

11

24

100

234

cells. Small, 2010, 6, 2176-82

30

29

(2006-2009)

28	Germafluorene conjugated copolymerBynthesis and applications in blue-light-emitting diodes and host materials. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 212-218		23
27	Poly-(p-phenylene vinylenes) with pendent 2,4-difluorophenyl and fluorenyl moieties: Synthesis, characterization, and device performance. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 2500-2508	2.5	11
26	Facile construction of nanofibrous ZnO photoelectrode for dye-sensitized solar cell applications. <i>Applied Physics Letters</i> , 2009 , 95, 043304	3.4	65
25	Improved adhesion of interconnected TiO2 nanofiber network on conductive substrate and its application in polymer photovoltaic devices. <i>Applied Physics Letters</i> , 2008 , 93, 013102	3.4	65
24	Anionic benzothiadiazole containing polyfluorene and oligofluorene as organic sensitizers for dye-sensitized solar cells. <i>Chemical Communications</i> , 2008 , 3789-91	5.8	48
23	Synthesis, structure, and optoelectronic properties of phosphafluorene copolymers. <i>Organic Letters</i> , 2008 , 10, 2913-6	6.2	74
22	Use of the beta-phase of poly(9,9-dioctylfluorene) as a probe into the interfacial interplay for the mixed bilayer films formed by sequential spin-coating. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 1611-8	₃ 3.4	31
21	Two novel oligomers based on fluorene and pyridine: Correlation between the structures and optoelectronic properties. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 1548-1558	2.5	7
20	Synthesis and characterization of poly(fluorene vinylene) copolymers containing thienylene units. <i>Journal of Applied Polymer Science</i> , 2008 , 108, 2438-2445	2.9	20
19	Kinked Star-Shaped Fluorene/ Triazatruxene Co-oligomer Hybrids with Enhanced Functional Properties for High-Performance, Solution-Processed, Blue Organic Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2008 , 18, 265-276	15.6	161
18	Hyperbranched triazine-containing polyfluorenes: Efficient blue emitters for polymer light-emitting diodes (PLEDs). <i>Polymer</i> , 2007 , 48, 1824-1829	3.9	36
17	Synthesis and characterization of a main-chain-type conjugated copolymer containing rare earth with photocrosslinkable group. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 388-394	2.5	22
16	Monodisperse star-shaped compound and its blend in uncapped polyfluorene matrices as the active materials for high-performance pure blue light-emitting devices. <i>Applied Physics Letters</i> , 2007 , 90, 1419	0 3 94	19
15	Synthesis and characterization of red phosphorescent-conjugated polymers containing charged iridium complexes and carbazole unit. <i>Synthetic Metals</i> , 2007 , 157, 813-822	3.6	19
14	Synthesis, Photophysics, and Electroluminescence of Poly(dibenzofluorene)s. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 1142-1148	4.8	8
13	Cruciform pfl diblock conjugated oligomers for electroluminescent applications. <i>New Journal of Chemistry</i> , 2006 , 30, 667-670	3.6	33
12	Monodisperse Six-Armed Triazatruxenes: Microwave-Enhanced Synthesis and Highly Efficient Pure-Deep-Blue Electroluminescence. <i>Macromolecules</i> , 2006 , 39, 3707-3709	5.5	148
11	Fluorene and silafluorene conjugated copolymer: A new blue light-emitting polymer. <i>Synthetic Metals</i> , 2006 , 156, 1161-1167	3.6	57

		Ru	і Zни
10	Color Tuning Based on a Six-membered Chelated Iridium(III) Complex with Aza-aromatic Ligand. <i>Chemistry Letters</i> , 2005 , 34, 1668-1669	1.7	23
9	Di-Channel Polyfluorene Containing Spiro-Bridged Oxadiazole Branches. <i>Macromolecular Rapid Communications</i> , 2005 , 26, 1729-1735	4.8	31
8	Eliminating chaos in the Belousov@habotinsky reaction by no-delay feedback and delayed feedback. <i>Theoretical Chemistry Accounts</i> , 2003 , 110, 85-91	1.9	1
7	Linear stability analysis of a reactiondiffusion model of solid-phase combustion. <i>Theoretical Chemistry Accounts</i> , 2002 , 107, 357-361	1.9	3
6	Explicit internal signal stochastic resonance in a chemical model. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 82-85	3.6	5
5	Optimizing the Back Contact of Kesterites and Perovskites: Band Edge Design and Defect Engineering in Molybdenum Chalcogenides. <i>Advanced Sustainable Systems</i> ,2100457	5.9	2
4	Tunable Intracrystal Cavity in Tungsten Bronze-Like Bimetallic Oxides for Electrochromic Energy Storage. <i>Advanced Energy Materials</i> ,2103106	21.8	7
3	Depth-dependent defect manipulation in perovskites for high-performance solar cells. <i>Energy and Environmental Science</i> ,	35.4	29
2	Laser-induced recoverable fluorescence quenching of perovskite films at a microscopic grain-scale. Energy and Environmental Materials,	13	1
1	An efficient screening strategy towards multifunctional catalysts for the simultaneous electroreduction of NO3[INO2[and NO to NH3. <i>Journal of Materials Chemistry A</i> ,	13	8