List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1259841/publications.pdf Version: 2024-02-01

<u> Рш 7нц</u>

#	Article	IF	CITATIONS
1	Polymer solar cells. Nature Photonics, 2012, 6, 153-161.	15.6	4,041
2	Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360, 1442-1446.	6.0	1,221
3	Minimizing non-radiative recombination losses in perovskite solar cells. Nature Reviews Materials, 2020, 5, 44-60.	23.3	754
4	Visibly Transparent Polymer Solar Cells Produced by Solution Processing. ACS Nano, 2012, 6, 7185-7190.	7.3	492
5	Inverted Perovskite Solar Cells: Progresses and Perspectives. Advanced Energy Materials, 2016, 6, 1600457.	10.2	387
6	Efficient perovskite solar cells by metal ion doping. Energy and Environmental Science, 2016, 9, 2892-2901.	15.6	372
7	Fused Silver Nanowires with Metal Oxide Nanoparticles and Organic Polymers for Highly Transparent Conductors. ACS Nano, 2011, 5, 9877-9882.	7.3	348
8	Improving the Stability of Metal Halide Perovskite Quantum Dots by Encapsulation. Advanced Materials, 2019, 31, e1900682.	11.1	270
9	Highly Efficient Nanoporous TiO ₂ â€Polythiophene Hybrid Solar Cells Based on Interfacial Modification Using a Metalâ€Free Organic Dye. Advanced Materials, 2009, 21, 994-1000.	11.1	243
10	Engineering of Electron-Selective Contact for Perovskite Solar Cells with Efficiency Exceeding 15%. ACS Nano, 2014, 8, 10161-10167.	7.3	233
11	A Robust Inter onnecting Layer for Achieving High Performance Tandem Polymer Solar Cells. Advanced Materials, 2011, 23, 3465-3470.	11.1	224
12	Chargeâ€Carrier Balance for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells. Advanced Materials, 2016, 28, 10718-10724.	11.1	214
13	Buried Interfaces in Halide Perovskite Photovoltaics. Advanced Materials, 2021, 33, e2006435.	11.1	214
14	In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6]4â^' cage nanoparticles. Nature Communications, 2017, 8, 15688.	5.8	191
15	Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells. Nano Energy, 2018, 49, 411-418.	8.2	184
16	Perovskite Solar Cells for Space Applications: Progress and Challenges. Advanced Materials, 2021, 33, e2006545.	11.1	184
17	Highâ€Performance Inverted Planar Heterojunction Perovskite Solar Cells Based on Lead Acetate Precursor with Efficiency Exceeding 18%. Advanced Functional Materials, 2016, 26, 3508-3514.	7.8	176
18	Kinked Starâ€Shaped Fluorene/ Triazatruxene Coâ€oligomer Hybrids with Enhanced Functional Properties for Highâ€Performance, Solutionâ€Processed, Blue Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2008, 18, 265-276.	7.8	174

#	Article	IF	CITATIONS
19	Monodisperse Six-Armed Triazatruxenes:  Microwave-Enhanced Synthesis and Highly Efficient Pure-Deep-Blue Electroluminescence. Macromolecules, 2006, 39, 3707-3709.	2.2	155
20	The intrinsic properties of FA _(1â^'x) MA _x PbI ₃ perovskite single crystals. Journal of Materials Chemistry A, 2017, 5, 8537-8544.	5.2	152
21	Superior Carrier Lifetimes Exceeding 6 µs in Polycrystalline Halide Perovskites. Advanced Materials, 2020, 32, e2002585.	11.1	151
22	Dualâ€ S ource Precursor Approach for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells. Advanced Materials, 2017, 29, 1604758.	11.1	142
23	Solution-processed flexible transparent conductors composed of silver nanowire networks embedded in indium tin oxide nanoparticle matrices. Nano Research, 2012, 5, 805-814.	5.8	134
24	Diboronâ€Assisted Interfacial Defect Control Strategy for Highly Efficient Planar Perovskite Solar Cells. Advanced Materials, 2018, 30, e1805085.	11.1	128
25	Mesoporous PbI ₂ Scaffold for Highâ€Performance Planar Heterojunction Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1501890.	10.2	124
26	Silver Nanowire Composite Window Layers for Fully Solutionâ€Deposited Thinâ€Film Photovoltaic Devices. Advanced Materials, 2012, 24, 5499-5504.	11.1	122
27	Highâ€Performance CsPbl <i>_x</i> Br _{3â€} <i>_x</i> Allâ€Inorganic Perovskite Solar Cells with Efficiency over 18% via Spontaneous Interfacial Manipulation. Advanced Functional Materials, 2020, 30, 2000457.	7.8	118
28	Mixed-cation perovskite solar cells in space. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	116
29	Depth-dependent defect manipulation in perovskites for high-performance solar cells. Energy and Environmental Science, 2021, 14, 6526-6535.	15.6	114
30	High-Performance Solid-State Organic Dye Sensitized Solar Cells with P3HT as Hole Transporter. Journal of Physical Chemistry C, 2011, 115, 7038-7043.	1.5	109
31	Anatase Mesoporous TiO ₂ Nanofibers with High Surface Area for Solid‣tate Dyeâ€&ensitized Solar Cells. Small, 2010, 6, 2176-2182.	5.2	108
32	Polarizing Organic Photovoltaics. Advanced Materials, 2011, 23, 4193-4198.	11.1	108
33	High-Performance Formamidinium-Based Perovskite Solar Cells via Microstructure-Mediated δ-to-α Phase Transformation. Chemistry of Materials, 2017, 29, 3246-3250.	3.2	99
34	MoS ₂ Memtransistors Fabricated by Localized Helium Ion Beam Irradiation. ACS Nano, 2019, 13, 14262-14273.	7.3	99
35	Electrostatic Selfâ€Assembly Conjugated Polyelectrolyteâ€5urfactant Complex as an Interlayer for High Performance Polymer Solar Cells. Advanced Functional Materials, 2012, 22, 3284-3289.	7.8	97
36	Improving Efficiency and Stability of Perovskite Solar Cells Enabled by A Near-Infrared-Absorbing Moisture Barrier. Joule, 2020, 4, 1575-1593.	11.7	88

#	Article	IF	CITATIONS
37	Dielectric screening in perovskite photovoltaics. Nature Communications, 2021, 12, 2479.	5.8	88
38	Chemical Polishing of Perovskite Surface Enhances Photovoltaic Performances. Journal of the American Chemical Society, 2022, 144, 1700-1708.	6.6	88
39	Plasmonicâ€Functionalized Broadband Perovskite Photodetector. Advanced Optical Materials, 2018, 6, 1701271.	3.6	86
40	Surface modification induced by perovskite quantum dots for triple-cation perovskite solar cells. Nano Energy, 2020, 67, 104189.	8.2	81
41	Synthesis, Structure, and Optoelectronic Properties of Phosphafluorene Copolymers. Organic Letters, 2008, 10, 2913-2916.	2.4	79
42	Facile construction of nanofibrous ZnO photoelectrode for dye-sensitized solar cell applications. Applied Physics Letters, 2009, 95, 043304.	1.5	79
43	Stable Formamidiniumâ€Based Perovskite Solar Cells via In Situ Grain Encapsulation. Advanced Energy Materials, 2018, 8, 1800232.	10.2	78
44	Multiple-Defect Management for Efficient Perovskite Photovoltaics. ACS Energy Letters, 2021, 6, 2404-2412.	8.8	74
45	Highâ€Performance Polymer Solar Cells Based on a Wideâ€Bandgap Polymer Containing Pyrrolo[3,4â€ <i>f</i>]benzotriazoleâ€5,7â€dione with a Power Conversion Efficiency of 8.63%. Advanced Science, 2016, 3, 1600032.	5.6	69
46	Van der Waals integration of high-l̂º perovskite oxides and two-dimensional semiconductors. Nature Electronics, 2022, 5, 233-240.	13.1	68
47	Patterned Perovskites for Optoelectronic Applications. Small Methods, 2018, 2, 1800110.	4.6	67
48	Improved adhesion of interconnected TiO2 nanofiber network on conductive substrate and its application in polymer photovoltaic devices. Applied Physics Letters, 2008, 93, 013102.	1.5	66
49	Fluorene and silafluorene conjugated copolymer: A new blue light-emitting polymer. Synthetic Metals, 2006, 156, 1161-1167.	2.1	60
50	Multiâ€Length Scaled Silver Nanowire Grid for Application in Efficient Organic Solar Cells. Advanced Functional Materials, 2016, 26, 4822-4828.	7.8	57
51	Pinhole-Free Hybrid Perovskite Film with Arbitrarily-Shaped Micro-Patterns for Functional Optoelectronic Devices. Nano Letters, 2017, 17, 3563-3569.	4.5	57
52	An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces. Light: Science and Applications, 2015, 4, e302-e302.	7.7	56
53	Efficient and low-temperature processed perovskite solar cells based on a cross-linkable hybrid interlayer. Journal of Materials Chemistry A, 2015, 3, 18483-18491.	5.2	55
54	An "all-in-one―mesh-typed integrated energy unit for both photoelectric conversion and energy storage in uniform electrochemical system. Nano Energy, 2015, 13, 670-678.	8.2	54

#	Article	IF	CITATIONS
55	Raman Signatures of Broken Inversion Symmetry and Inâ€Plane Anisotropy in Typeâ€II Weyl Semimetal Candidate TaIrTe ₄ . Advanced Materials, 2018, 30, e1706402.	11.1	54
56	Perovskite solar cell towards lower toxicity: a theoretical study of physical lead reduction strategy. Science Bulletin, 2019, 64, 1255-1261.	4.3	54
57	An efficient screening strategy towards multifunctional catalysts for the simultaneous electroreduction of NO ₃ ^{â^<} , NO ₂ ^{â^`} and NO to NH ₃ . Journal of Materials Chemistry A, 2022, 10, 9707-9716.	5.2	52
58	Anionic benzothiadiazole containing polyfluorene and oligofluorene as organic sensitizers for dye-sensitized solar cells. Chemical Communications, 2008, , 3789.	2.2	51
59	Mechanochemistry Advances Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2022, 34, e2107420.	11.1	51
60	Tunable Intracrystal Cavity in Tungsten Bronzeâ€Like Bimetallic Oxides for Electrochromic Energy Storage. Advanced Energy Materials, 2022, 12, 2103106.	10.2	48
61	Spiro-functionalized Ligand with Supramolecular Steric Hindrance to Control ï€â~'Ĩ€ Interaction in the Iridium Complex for High-Performance Electrophosphorescent Devices. Journal of Physical Chemistry Letters, 2010, 1, 272-276.	2.1	46
62	Monochromic Red-Emitting Nonconjugated Copolymers Containing Double-Carrier-Trapping Phosphine Oxide Eu ³⁺ Segments: Toward Bright and Efficient Electroluminescence. Journal of Physical Chemistry C, 2011, 115, 15627-15638.	1.5	45
63	Reduced bilateral recombination by functional molecular interface engineering for efficient inverted perovskite solar cells. Nano Energy, 2020, 78, 105249.	8.2	45
64	Interfacial stabilization for inverted perovskite solar cells with long-term stability. Science Bulletin, 2021, 66, 991-1002.	4.3	45
65	Bipyridinium-Bearing Multi-stimuli Responsive Chromic Material with High Stability. Crystal Growth and Design, 2018, 18, 3236-3243.	1.4	42
66	Dopant-free hole transporting materials with supramolecular interactions and reverse diffusion for efficient and modular p-i-n perovskite solar cells. Science China Chemistry, 2020, 63, 987-996.	4.2	42
67	Non-resonant metasurface for broadband elastic wave mode splitting. Applied Physics Letters, 2020, 116, .	1.5	42
68	Plasma Oxidized Ti ₃ C ₂ T _{<i>x</i>} MXene as Electron Transport Layer for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 32495-32502.	4.0	41
69	Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides. Research, 2020, 2020, 9085782.	2.8	40
70	Hyperbranched triazine-containing polyfluorenes: Efficient blue emitters for polymer light-emitting diodes (PLEDs). Polymer, 2007, 48, 1824-1829.	1.8	38
71	A 3-dimensional spiro-functionalized platinum(ii) complex to suppress intermolecular π–π and Ptâ<⁻Pt supramolecular interactions for a high-performance electrophosphorescent device. Chemical Communications, 2012, 48, 3854.	2.2	38
72	Strain Loading Mode Dependent Bandgap Deformation Potential in ZnO Micro/Nanowires. ACS Nano, 2015, 9, 11960-11967.	7.3	37

#	Article	IF	CITATIONS
73	Di-Channel Polyfluorene Containing Spiro-Bridged Oxadiazole Branches. Macromolecular Rapid Communications, 2005, 26, 1729-1735.	2.0	34
74	Use of the β-Phase of Poly(9,9-dioctylfluorene) as a Probe into the Interfacial Interplay for the Mixed Bilayer Films Formed by Sequential Spin-Coating. Journal of Physical Chemistry B, 2008, 112, 1611-1618.	1.2	34
75	Photophysical and electroluminescent properties of a Series of Monochromatic red-emitting europium-complexed nonconjugated copolymers based on diphenylphosphine oxide modified polyvinylcarbazole. Polymer, 2011, 52, 804-813.	1.8	34
76	High-performance hybrid solar cells employing metal-free organic dye modified TiO2 as photoelectrode. Applied Energy, 2012, 90, 305-308.	5.1	34
77	Cruciform p–n diblock conjugated oligomers for electroluminescent applications. New Journal of Chemistry, 2006, 30, 667-670.	1.4	33
78	Perovskite Single-Crystal Microarrays for Efficient Photovoltaic Devices. Chemistry of Materials, 2018, 30, 4590-4596.	3.2	33
79	Lowâ€Dimensional Contact Layers for Enhanced Perovskite Photodiodes. Advanced Functional Materials, 2020, 30, 2001692.	7.8	30
80	Germafluorene conjugated copolymer—synthesis and applications in blue-light-emitting diodes and host materials. Science in China Series B: Chemistry, 2009, 52, 212-218.	0.8	26
81	Applications of cesium in the perovskite solar cells. Journal of Semiconductors, 2017, 38, 011003.	2.0	26
82	Perovskite hetero-bilayer for efficient charge-transport-layer-free solar cells. Joule, 2022, 6, 1277-1289.	11.7	25
83	Color Tuning Based on a Six-membered Chelated Iridium(III) Complex with Aza-aromatic Ligand. Chemistry Letters, 2005, 34, 1668-1669.	0.7	24
84	Synthesis and characterization of a main-chain-type conjugated copolymer containing rare earth with photocrosslinkable group. Journal of Polymer Science Part A, 2007, 45, 388-394.	2.5	24
85	Nitrogen substitution improves the mobility and stability of electron transport materials for inverted perovskite solar cells. Nanoscale, 2018, 10, 17873-17883.	2.8	24
86	Modification of TiO2 Nanoparticles with Organodiboron Molecules Inducing Stable Surface Ti3+ Complex. IScience, 2019, 20, 195-204.	1.9	24
87	Theory and Realization of Nonresonant Anisotropic Singly Polarized Solids Carrying Only Shear Waves. Physical Review Applied, 2019, 12, .	1.5	23
88	Tailoring Perovskite Adjacent Interfaces by Conjugated Polyelectrolyte for Stable and Efficient Solar Cells. Solar Rrl, 2020, 4, 2000060.	3.1	23
89	Self-Assembled Porphyrin Nanoleaves with Unique Crossed Transportation of Photogenerated Carriers to Enhance Photocatalytic Hydrogen Production. Nano Letters, 2022, 22, 157-163.	4.5	23
90	Improved Efficiency of Inverted Perovskite Solar Cells Via Surface Plasmon Resonance Effect of Au@PSS Coreâ€5hell Tetrahedra Nanoparticles. Solar Rrl, 2018, 2, 1800061.	3.1	22

Rui Zнu

#	Article	IF	CITATIONS
91	Diindolotriazatruxene-Based Hole-Transporting Materials for High-Efficiency Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 45717-45725.	4.0	22
92	Control of ï€â€"ï€ Stacking of Dithienopyrrole-Based, Hole-Transporting Materials via Lateral Substituents for High-Efficiency Perovskite Solar Cells. ACS Photonics, 2018, 5, 4694-4701.	3.2	21
93	A <i>peri</i> â€Xanthenoxanthene Centered Columnarâ€Stacking Organic Semiconductor for Efficient, Photothermally Stable Perovskite Solar Cells. Chemistry - A European Journal, 2019, 25, 945-948.	1.7	21
94	Linear Relationship between the Dielectric Constant and Band Gap in Low-Dimensional Mixed-Halide Perovskites. Journal of Physical Chemistry C, 2021, 125, 14883-14890.	1.5	21
95	Ultralight flexible perovskite solar cells. Science China Materials, 2022, 65, 2319-2324.	3.5	21
96	Monodisperse star-shaped compound and its blend in uncapped polyfluorene matrices as the active materials for high-performance pure blue light-emitting devices. Applied Physics Letters, 2007, 90, 141909.	1.5	20
97	Synthesis and characterization of poly(fluorene vinylene) copolymers containing thienylene–vinylene units. Journal of Applied Polymer Science, 2008, 108, 2438-2445.	1.3	20
98	Green Solution-Bathing Process for Efficient Large-Area Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 24905-24912.	4.0	20
99	Torsional bandgap switching in metamaterials with compression–torsion interacted origami resonators. Journal of Applied Physics, 2021, 130, .	1.1	20
100	Synthesis and characterization of red phosphorescent-conjugated polymers containing charged iridium complexes and carbazole unit. Synthetic Metals, 2007, 157, 813-822.	2.1	19
101	Synergy of Electron Transfer and Charge Transfer in the Control of Photodynamic Behavior of Coordination Polymers. Chemistry - A European Journal, 2019, 25, 13152-13156.	1.7	19
102	Atomic-Scale Probing of Reversible Li Migration in 1T-V _{1+<i>x</i>} Se ₂ and the Interactions between Interstitial V and Li. Nano Letters, 2018, 18, 6094-6099.	4.5	18
103	Study of damage generation induced by focused helium ion beam in silicon. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	0.6	18
104	<i>N</i> â€Annulated Peryleneâ€Based Hole Transporters for Perovskite Solar Cells: The Significant Influence of Lateral Substituents. ChemSusChem, 2018, 11, 672-680.	3.6	17
105	Fast-growing procedure for perovskite films in planar heterojunction perovskite solar cells. Chinese Chemical Letters, 2015, 26, 1518-1521.	4.8	16
106	Molecular Engineering of Hexaazatriphenylene Derivatives toward More Efficient Electron-Transporting Materials for Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 38222-38231.	4.0	16
107	Phototriggered Mechanical Movement in A Bipyridinium-based Coordination Polymer Powered by Electron Transfer. Inorganic Chemistry, 2018, 57, 2724-2729.	1.9	15
108	Tracking the evolution of materials and interfaces in perovskite solar cells under an electric field. Communications Materials, 2022, 3, .	2.9	15

Rui Zнu

#	Article	IF	CITATIONS
109	Enhanced near-band-edge emission and field emission properties from plasma treated ZnO nanowires. Applied Physics A: Materials Science and Processing, 2010, 100, 165-170.	1.1	14
110	Single crystalline SmB6 nanowires for self-powered, broadband photodetectors covering mid-infrared. Applied Physics Letters, 2018, 112, .	1.5	14
111	Inverted devices are catching up. Nature Energy, 2020, 5, 123-124.	19.8	14
112	Optimizing Vertical Crystallization for Efficient Perovskite Solar Cells by Buried Composite Layers. Solar Rrl, 2021, 5, 2100457.	3.1	14
113	Large tunable linear magnetoresistance in gold nanoparticle decorated graphene. Applied Physics Letters, 2014, 105, 143103.	1.5	13
114	Regrowth of Template ZnO Nanowires for the Underlying Catalyst-Free Growth Mechanism. Crystal Growth and Design, 2011, 11, 2135-2141.	1.4	12
115	Fabrication of compact and stable perovskite films with optimized precursor composition in the fast-growing procedure. Science China Materials, 2017, 60, 608-616.	3.5	12
116	Polyâ€(<i>p</i> â€phenylene vinylenes) with pendent 2,4â€difluorophenyl and fluorenyl moieties: Synthesis, characterization, and device performance. Journal of Polymer Science Part A, 2009, 47, 2500-2508.	2.5	11
117	Growth mechanism study viain situ epitaxial growth of high-oriented ZnO nanowires. CrystEngComm, 2011, 13, 606-610.	1.3	11
118	Synthesis, characterization and applications of vinylsilafluorene copolymers: New host materials for electroluminescent devices. Science China Chemistry, 2010, 53, 2329-2336.	4.2	10
119	Facile synthesis and optical properties of ultrathin Cu-doped ZnSe nanorods. CrystEngComm, 2013, 15, 10495.	1.3	10
120	Modifying optical properties of ZnO nanowires via strain-gradient. Frontiers of Physics, 2013, 8, 509-515.	2.4	9
121	Spin-polarized surface state transport in a topological Kondo insulator SmB6 nanowire. Physical Review B, 2017, 95, .	1.1	9
122	Introducing pyridyl into electron transport materials plays a key role in improving electron mobility and interface properties for inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 16304-16312.	5.2	9
123	Synthesis, Photophysics, and Electroluminescence of Poly(dibenzofluorene)s. Macromolecular Rapid Communications, 2006, 27, 1142-1148.	2.0	8
124	Confined-path interference suppressed quantum correction on weak antilocalization effect in a BiSbTeSe2 topological insulator. Applied Physics Letters, 2018, 112, .	1.5	8
125	Robust Nanoporous Supramolecular Network Through Charge-Transfer Interaction. ACS Applied Materials & Interfaces, 2018, 10, 43987-43992.	4.0	8
126	Modular metamaterials composed of foldable obelisk-like units with reprogrammable mechanical behaviors based on multistability. Scientific Reports, 2019, 9, 18812.	1.6	8

#	Article	IF	CITATIONS
127	Two novel oligomers based on fluorene and pyridine: Correlation between the structures and optoelectronic properties. Journal of Polymer Science Part A, 2008, 46, 1548-1558.	2.5	7
128	Low-Cost Fabrication of TiO2 Nanorod Photoelectrode for Dye-sensitized Solar Cell Application. Australian Journal of Chemistry, 2011, 64, 1282.	0.5	7
129	Solutionâ€Processed TiO ₂ Nanoparticles as the Window Layer for CuIn(S,Se) ₂ Devices. Advanced Energy Materials, 2012, 2, 1368-1374.	10.2	7
130	Outermost tensile strain dominated exciton emission in bending CdSe nanowires. Science China Materials, 2014, 57, 26-33.	3.5	7
131	Adaptive Phase Correction for Phase Measuring Deflectometry Based on Light Field Modulation. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-10.	2.4	7
132	Passivation principle of deep-level defects: a study of Sn _{Zn} defects in kesterites for high-efficient solar cells. Journal of Materials Chemistry A, 2022, 10, 2849-2855.	5.2	7
133	Explicit internal signal stochastic resonance in a chemical model. Physical Chemistry Chemical Physics, 2002, 4, 82-85.	1.3	6
134	Perovskite Solar Cells: High-Performance Inverted Planar Heterojunction Perovskite Solar Cells Based on Lead Acetate Precursor with Efficiency Exceeding 18% (Adv. Funct. Mater. 20/2016). Advanced Functional Materials, 2016, 26, 3551-3551.	7.8	6
135	Increase of intrinsic emittance induced by multiphoton photoemission from copper cathodes illuminated by femtosecond laser pulses. AIP Advances, 2018, 8, 055225.	0.6	6
136	The structural stability and defect-tolerance of ionic spinel semiconductors for high-efficiency solar cells. Journal of Materials Chemistry A, 2021, 9, 14566-14575.	5.2	6
137	Zn ⁺ –O [–] Dual-Spin Surface State Formation by Modification of ZnO Nanoparticles with Diboron Compounds. Langmuir, 2019, 35, 14173-14179.	1.6	5
138	Li-based selenized Cu2ZnSnS4 surface: Possible route to overcoming <i>v</i> oc-deficit of kesterite solar cells. Applied Physics Letters, 2021, 118, .	1.5	5
139	Linear stability analysis of a reaction-diffusion model of solid-phase combustion. Theoretical Chemistry Accounts, 2002, 107, 357-361.	0.5	4
140	In situ growth and density-functional-theory study of polarity-dependent homo-epitaxial ZnO microwires. CrystEngComm, 2012, 14, 355-358.	1.3	4
141	Quantum efficiency, intrinsic emittance, and response time measurements of a titanium nitride photocathode. Physical Review Accelerators and Beams, 2021, 24, .	0.6	4
142	Research progress of solution processed all-inorganic perovskite solar cell. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158806.	0.2	4
143	Optimizing the Back Contact of Kesterites and Perovskites: Band Edge Design and Defect Engineering in Molybdenum Chalcogenides. Advanced Sustainable Systems, 0, , 2100457.	2.7	4
144	Formation mechanism of homo-epitaxial morphology on ZnO (000 ± 1) polar surfaces. CrystEngComm, 2013, 15, 4249.	1.3	3

#	Article	IF	CITATIONS
145	Organic Solar Cells: Multi-Length Scaled Silver Nanowire Grid for Application in Efficient Organic Solar Cells (Adv. Funct. Mater. 27/2016). Advanced Functional Materials, 2016, 26, 4806-4806.	7.8	3
146	Designing Hole Transport Materials with High Hole Mobility and Outstanding Interface Properties for Perovskite Solar Cells. ChemPhysChem, 2020, 21, 1866-1872.	1.0	3
147	Interplay between topological surface states and superconductivity in SmB6/NbN tunnel junctions. Physical Review B, 2017, 96, .	1.1	3
148	Photoprotective energy quenching in the red alga Porphyridium purpureum occurs at the core antenna of the photosystem II but not at its reaction center. Journal of Biological Chemistry, 2022, 298, 101783.	1.6	3
149	Surface-anchoring zwitterionic antioxidant enables efficient, stable, and scalable all-perovskite tandem solar cells. Science China Chemistry, 2021, 64, 3-4.	4.2	2
150	Laserâ€induced recoverable fluorescence quenching of perovskite films at a microscopic grainâ€scale. Energy and Environmental Materials, 0, , .	7.3	2
151	Disorder control enhances ultrathin solar cells. Nature Photonics, 2022, 16, 176-177.	15.6	2
152	Eliminating chaos in the Belousov?Zhabotinsky reaction by no-delay feedback and delayed feedback. Theoretical Chemistry Accounts, 2003, 110, 85-91.	0.5	1
153	Perovskite Solar Cells: Stable Formamidinium-Based Perovskite Solar Cells via In Situ Grain Encapsulation (Adv. Energy Mater. 22/2018). Advanced Energy Materials, 2018, 8, 1870101.	10.2	1
154	Investigation of post-thermal annealing-induced enhancement in photovoltaic performance for squaraine-based organic solar cells. Frontiers of Materials Science, 2020, 14, 81-88.	1.1	1
155	Numerical study of silicon vacancy color centers in silicon carbide by helium ion implantation and subsequent annealing. Nanotechnology, 2022, 33, 125701.	1.3	1
156	Designing Multifunctional Donor–Acceptor-Type Molecules to Passivate Surface Defects Efficiently and Enhance Charge Transfer of CsPbI ₂ Br Perovskite for High Power Conversion Efficiency. Inorganic Chemistry, 0, , .	1.9	1
157	Ultrafast charge generation in a homogenous polymer domain. Scientific Reports, 2022, 12, .	1.6	1
158	Surface coating effect on field emission performance of ZnO nanowires. Applied Physics A: Materials Science and Processing, 2012, 106, 557-562.	1.1	0
159	Charge Carrier Balance for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells Based on Interface Engineering. , 2016, , .		0
160	Polymer Solar Cells: Highâ€Performance Polymer Solar Cells Based on a Wideâ€Bandgap Polymer Containing Pyrrolo[3,4â€ <i>f</i>]benzotriazoleâ€5,7â€dione with a Power Conversion Efficiency of 8.63% (Adv. Sci. 9/2016). Advanced Science, 2016, 3, .	5.6	0
161	Overcoming the performance deadlock by ideal-bandgap perovskites. Matter, 2021, 4, 1445-1447.	5.0	0
162	(Invited) Inverted Planar Heterojunction Perovskite Solar Cells Based on Lead Acetate Precursor with Efficiency Exceeding 18%. ECS Meeting Abstracts, 2016, , .	0.0	0