Mani Ramaswami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1259694/publications.pdf

Version: 2024-02-01

81743 88477 5,688 96 39 70 citations h-index g-index papers 126 126 126 6731 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Altered Ribostasis: RNA-Protein Granules in Degenerative Disorders. Cell, 2013, 154, 727-736.	13.5	543
2	Staufen- and FMRP-Containing Neuronal RNPs Are Structurally and Functionally Related to Somatic P Bodies. Neuron, 2006, 52, 997-1009.	3.8	328
3	A genome-wide resource for the analysis of protein localisation in Drosophila. ELife, 2016, 5, e12068.	2.8	315
4	The Drosophila easily shocked gene: A mutation in a phospholipid synthetic pathway causes seizure, neuronal failure, and paralysis. Cell, 1994, 79, 23-33.	13.5	201
5	Plasticity of local GABAergic interneurons drives olfactory habituation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E646-54.	3.3	188
6	Intermediates in synaptic vesicle recycling revealed by optical imaging of Drosophila neuromuscular junctions. Neuron, 1994, 13, 363-375.	3.8	186
7	Traffic of Dynamin within Individual <i>Drosophila </i> Synaptic Boutons Relative to Compartment-Specific Markers. Journal of Neuroscience, 1996, 16, 5443-5456.	1.7	168
8	Not just pretty eyes: Drosophila eye-colour mutations and lysosomal delivery. Trends in Cell Biology, 1998, 8, 257-259.	3 . 6	162
9	AP-1 functions upstream of CREB to control synaptic plasticity in Drosophila. Nature, 2002, 416, 870-874.	13.7	156
10	Network Plasticity in Adaptive Filtering and Behavioral Habituation. Neuron, 2014, 82, 1216-1229.	3.8	156
11	The Ataxin-2 protein is required for microRNA function and synapse-specific long-term olfactory habituation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E655-62.	3.3	146
12	Nucleoside Diphosphate Kinase, a Source of GTP, Is Required for Dynamin-Dependent Synaptic Vesicle Recycling. Neuron, 2001, 30, 197-210.	3.8	145
13	The Translational Repressor Pumilio Regulates Presynaptic Morphology and Controls Postsynaptic Accumulation of Translation Factor eIF-4E. Neuron, 2004, 44, 663-676.	3.8	143
14	Synaptic Localization and Restricted Diffusion of a <i>Drosophila</i> Neuronal Synaptobrevin - Green Fluorescent Protein Chimera <i>in Vivo</i> . Journal of Neurogenetics, 2000, 13, 233-255.	0.6	120
15	The DEAD-Box RNA Helicase Ded1p Affects and Accumulates in <i>Saccharomyces cerevisiae</i> P-Bodies. Molecular Biology of the Cell, 2008, 19, 984-993.	0.9	109
16	FMRP and Ataxin-2 function together in long-term olfactory habituation and neuronal translational control. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E99-E108.	3.3	108
17	Inhibitory engrams in perception and memory. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6666-6674.	3.3	107
18	Leucine-zipper motif update. Nature, 1989, 340, 103-103.	13.7	104

#	Article	IF	CITATIONS
19	RNP-Granule Assembly via Ataxin-2 Disordered Domains Is Required for Long-Term Memory and Neurodegeneration. Neuron, 2018, 98, 754-766.e4.	3.8	98
20	Structural and functional changes in the olfactory pathway of adultDrosophilatake place at a critical age. Journal of Neurobiology, 2003, 56, 13-23.	3.7	92
21	Repression of Pumilio Protein Expression by Rbfox1 Promotes Germ Cell Differentiation. Developmental Cell, 2016, 36, 562-571.	3.1	84
22	Neuronal activity and Wnt signaling act through Gsk3- \hat{l}^2 to regulate axonal integrity in mature < i>Drosophila < /i> olfactory sensory neurons. Development (Cambridge), 2009, 136, 1273-1282.	1.2	74
23	nalyot, a Mutation of the Drosophila Myb-Related Adf1 Transcription Factor, Disrupts Synapse Formation and Olfactory Memory. Neuron, 2000, 27, 145-158.	3.8	71
24	Social communication of predator-induced changes in Drosophila behavior and germ line physiology. ELife, 2015, 4, .	2.8	71
25	Analysis of Conditional Paralytic Mutants in Drosophila Sarco-Endoplasmic Reticulum Calcium ATPase Reveals Novel Mechanisms for Regulating Membrane Excitability. Genetics, 2005, 169, 737-750.	1.2	70
26	GLD2 poly(A) polymerase is required for long-term memory. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14644-14649.	3.3	70
27	Human potassium channel genes: Molecular cloning and functional expression. Molecular and Cellular Neurosciences, 1990, 1, 214-223.	1.0	68
28	An internal GAP domain negatively regulates presynaptic dynamin in vivo. Journal of Cell Biology, 2005, 169, 117-126.	2.3	61
29	Genetic Studies on Dynamin Function in <i>Drosophila</i> . Journal of Neurogenetics, 1993, 9, 73-87.	0.6	60
30	DrosophilaStoned Proteins Regulate the Rate and Fidelity of Synaptic Vesicle Internalization. Journal of Neuroscience, 2001, 21, 3034-3044.	1.7	56
31	Distinct Roles for N-Ethylmaleimide-sensitive Fusion Protein (NSF) Suggested by the Identification of a Second Drosophila NSF Homolog. Journal of Biological Chemistry, 1995, 270, 18742-18744.	1.6	55
32	Retrograde Regulation in the CNS. Neuron, 2004, 41, 845-848.	3.8	54
33	Central synaptic mechanisms underlie short-term olfactory habituation in <i>Drosophila</i> larvae. Learning and Memory, 2010, 17, 645-653.	0.5	54
34	The Products of theDrosophila stonedLocus Interact with Synaptic Vesicles via Synaptotagmin. Journal of Neuroscience, 2000, 20, 8254-8261.	1.7	51
35	Normal dendrite growth in <i>Drosophila</i> motor neurons requires the APâ€1 transcription factor. Developmental Neurobiology, 2008, 68, 1225-1242.	1.5	49
36	Plasticity of Recurrent Inhibition in the <i>Drosophila </i> Antennal Lobe. Journal of Neuroscience, 2012, 32, 7225-7231.	1.7	48

#	Article	IF	CITATIONS
37	Evidence for cell autonomous AP1 function in regulation of Drosophila motor-neuron plasticity. BMC Neuroscience, 2003, 4, 20.	0.8	45
38	Conditional mutations in SERCA, the Sarco-endoplasmic reticulum Ca2+-ATPase, alter heart rate and rhythmicity in Drosophila. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2006, 176, 253-263.	0.7	45
39	Syndapin Promotes Formation of a Postsynaptic Membrane System in <i>Drosophila</i> . Molecular Biology of the Cell, 2009, 20, 2254-2264.	0.9	43
40	Gene Dosage in the Dysbindin Schizophrenia Susceptibility Network Differentially Affect Synaptic Function and Plasticity. Journal of Neuroscience, 2015, 35, 325-338.	1.7	43
41	A Product of theDrosophila stonedLocus Regulates Neurotransmitter Release. Journal of Neuroscience, 1998, 18, 9638-9649.	1.7	40
42	A Novel Paradigm for Nonassociative Long-Term Memory in <i>Drosophila </i> : Predator-Induced Changes in Oviposition Behavior. Genetics, 2015, 199, 1143-1157.	1,2	40
43	Long-term memory consolidation: The role of RNA-binding proteins with prion-like domains. RNA Biology, 2017, 14, 568-586.	1.5	39
44	Probable Mechanisms Underlying Interallelic Complementation and Temperature-Sensitivity of Mutations at the shibire Locus of Drosophila melanogaster. Genetics, 1998, 149, 1019-1030.	1.2	38
45	Synaptic and genomic responses to JNK and AP-1 signaling in Drosophila neurons. BMC Neuroscience, 2005, 6, 39.	0.8	36
46	Synapsin Function in GABA-ergic Interneurons Is Required for Short-Term Olfactory Habituation. Journal of Neuroscience, 2013, 33, 16576-16585.	1.7	36
47	Sodium channel modulating activity in a Î-conotoxin from an Indian marine snail. FEBS Letters, 2003, 553, 209-212.	1.3	34
48	The Me31B DEAD-Box Helicase Localizes to Postsynaptic Foci and Regulates Expression of a CaMKII Reporter mRNA in Dendrites of Drosophila Olfactory Projection Neurons. Frontiers in Neural Circuits, 2010, 4, 121.	1.4	34
49	Olfactory Habituation in Drosophila—Odor Encoding and its Plasticity in the Antennal Lobe. Progress in Brain Research, 2014, 208, 3-38.	0.9	34
50	A Temperature-Sensitive Allele of Drosophila <i>sesB</i> Reveals Acute Functions for the Mitochondrial Adenine Nucleotide Translocase in Synaptic Transmission and Dynamin Regulation. Genetics, 2003, 165, 1243-1253.	1.2	33
51	Genetic Modifiers of <i>dFMR1 </i> Encode RNA Granule Components in Drosophila. Genetics, 2009, 182, 1051-1060.	1.2	32
52	Gustatory habituation in Drosophila relies on rutabaga (adenylate cyclase)-dependent plasticity of GABAergic inhibitory neurons. Learning and Memory, 2012, 19, 627-635.	0.5	31
53	Fos and Jun potentiate individual release sites and mobilize the reserve synaptic-vesicle pool at the <i>Drosophila</i> larval motor synapse. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4000-4005.	3. 3	29
54	Syndapin is dispensable for synaptic vesicle endocytosis at the Drosophila larval neuromuscular junction. Molecular and Cellular Neurosciences, 2009, 40, 234-241.	1.0	29

#	Article	IF	Citations
55	Drosophila endosomal proteins hook and deep orange regulate synapse size but not synaptic vesicle recycling. Journal of Neurobiology, 2000, 45, 105-119.	3.7	28
56	The ups and downs of daily life: Profiling circadian gene expression in Drosophila. Bio Essays, 2002, 24, 494-498.	1.2	28
57	Novel Peptides of Therapeutic Promise from Indian Conidae. Annals of the New York Academy of Sciences, 2005, 1056, 462-473.	1.8	27
58	P-Body Components, microRNA Regulation, and Synaptic Plasticity. Scientific World Journal, The, 2007, 7, 178-190.	0.8	26
59	Is NMDA Receptor-Coincidence Detection Required for Learning and Memory?. Neuron, 2012, 74, 767-769.	3.8	25
60	The Long 3′UTR mRNA of CaMKII Is Essential for Translation-Dependent Plasticity of Spontaneous Release in Drosophila melanogaster. Journal of Neuroscience, 2017, 37, 10554-10566.	1.7	24
61	The conserved P body component HPat/Pat1 negatively regulates synaptic terminal growth at the larval <i>Drosophila</i> neuromuscular junction. Journal of Cell Science, 2012, 125, 6105-6116.	1.2	22
62	\ddot{l} f2-Adaptin Facilitates Basal Synaptic Transmission and Is Required for Regenerating Endo-Exo Cycling Pool Under High-Frequency Nerve Stimulation in <i>Drosophila</i> . Genetics, 2016, 203, 369-385.	1.2	22
63	Functional Dissection of a Eukaryotic Dicistronic Gene: Transgenic stonedB, but Not stonedA, Restores Normal Synaptic Properties to Drosophila stoned Mutants. Genetics, 2003, 165, 185-196.	1.2	22
64	A simple method for statistical analysis of intensity differences in microarray-derived gene expression data. , $2001,1,8.$		21
65	Regulation of dynamin by nucleoside diphosphate kinase. Journal of Bioenergetics and Biomembranes, 2003, 35, 49-55.	1.0	17
66	Antagonistic roles for Ataxin-2 structured and disordered domains in RNP condensation. ELife, 2021, 10, .	2.8	17
67	Functional Analysis of Dynamin Isoforms in Drosophila Melanogaster. Journal of Neurogenetics, 1999, 13, 119-143.	0.6	14
68	Endocytosis in Drosophila: Progress, Possibilities, Prognostications. Experimental Cell Research, 2001, 271, 28-35.	1.2	14
69	A Genetic and Mosaic Analysis of a Locus Involved in the Anesthesia Response of <i>Drosophila melanogaster</i>	1.2	14
70	A new genetic model of activity-induced Ras signaling dependent pre-synaptic plasticity in Drosophila. Brain Research, 2010, 1326, 15-29.	1.1	13
71	Glomerulus-Selective Regulation of a Critical Period for Interneuron Plasticity in the <i>Drosophila</i> Antennal Lobe. Journal of Neuroscience, 2020, 40, 5549-5560.	1.7	13
72	Stoned. Traffic, 2010, 11, 16-24.	1.3	12

#	Article	IF	Citations
73	Spinsters, Synaptic Defects, and Amaurotic Idiocy. Neuron, 2002, 36, 335-338.	3.8	11
74	The Making of Long-Lasting Memories: A Fruit Fly Perspective. Frontiers in Behavioral Neuroscience, 2021, 15, 662129.	1.0	10
75	Alleviation of the Temperature-Sensitive Paralytic Phenotype of <i>Shibire </i> ^{TS} Mutants in <i>Drosophila </i> by Sub-Anesthetic Concentrations of Carbon Dioxide. Journal of Neurogenetics, 1996, 10, 221-238.	0.6	9
76	Vesicle Recycling at the Drosophila Neuromuscular Junction. International Review of Neurobiology, 1999, 43, 163-189.	0.9	8
77	The Neurohumanities: An Emerging Partnership for Exploring the Human Experience. Neuron, 2020, 108, 590-593.	3.8	6
78	Local translation provides the asymmetric distribution of CaMKII required for associative memory formation. Current Biology, 2022, 32, 2730-2738.e5.	1.8	6
79	Implications of the <i>Sap47</i> null mutation for synapsin phosphorylation, longevity, climbing, and behavioural plasticity in adult <i>Drosophila</i> Journal of Experimental Biology, 2019, 222, .	0.8	5
80	Activityâ€Dependent Regulation of Transcription During Development of Synapses. International Review of Neurobiology, 2006, 75, 287-305.	0.9	4
81	Gaussian mixtures for intensity modeling of spots in microscopy. , 2010, , .		4
82	Identification and Structural Characterization of Interneurons of the Drosophila Brain by Monoclonal Antibodies of the Wýrzburg Hybridoma Library. PLoS ONE, 2013, 8, e75420.	1.1	4
83	The transcriptional response to oxidative stress is independent of stress-granule formation. Molecular Biology of the Cell, 2022, 33, mbcE21080418.	0.9	4
84	A <i>Drosophila</i> Circuit for Habituation Override. Journal of Neuroscience, 2022, 42, 2930-2941.	1.7	4
85	Gaussian mixture models for spots in microscopy using a new split/merge em algorithm. , 2010, , .		3
86	A C-terminal ataxin-2 disordered region promotes Huntingtin protein aggregation and neurodegeneration in Drosophila models of Huntington's disease. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	3
87	Specifying the Age-Sensitive Component of a Short-Term Memory. Neuron, 2003, 40, 877-879.	3.8	2
88	Kissing and Pinching: Synaptotagmin and Calcium Do More between Bilayers. Neuron, 2006, 50, 3-5.	3.8	2
89	Obaid Siddiqi at 80 and Neurogenetics in India. Journal of Neurogenetics, 2012, 26, 255-256.	0.6	2
90	Learning and memory: Clashing engrams in the fly brain. Current Biology, 2021, 31, R1009-R1011.	1.8	2

#	Article	IF	CITATIONS
91	Impaired inhibitory processing: a new therapeutic target for autism and psychosis?. British Journal of Psychiatry, 2021, 218, 295-298.	1.7	1
92	How "carrots and sticks―are encoded in the brain: Motivation, reward, addiction and fear. Journal of Biosciences, 1998, 23, 163-164.	0.5	0
93	EDITORIAL: THE ORIGINS OF NEUROGENETICS. Journal of Neurogenetics, 2007, 21, 165-167.	0.6	O
94	Preface: The Genetics and Epigenetics of Addiction. Journal of Neurogenetics, 2009, 23, 251-251.	0.6	0
95	A wavelet-based Bayesian framework for 3D object segmentation in microscopy. , 2012, , .		0
96	Fly model causes neurological rethink. ELife, 2013, 2, e01820.	2.8	0