
Tamie L Veith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1259680/publications.pdf Version: 2024-02-01

TAMIE | VEITH

#	Article	IF	CITATIONS
1	Long term agroecosystem research experimental watershed network. Hydrological Processes, 2022, 36, .	1.1	1
2	Meeting the Moment: Leveraging Temporal Inequality for Temporal Targeting to Achieve Water-Quality Load-Reduction Goals. Water (Switzerland), 2022, 14, 1003.	1.2	1
3	The USDAâ€ARS Experimental Watershed Network: Evolution, Lessons Learned, Societal Benefits, and Moving Forward. Water Resources Research, 2021, 57, e2019WR026473.	1.7	11
4	Reallocating crop rotation patterns improves water quality and maintains crop yield. Agricultural Systems, 2021, 187, 103015.	3.2	13
5	The Chesapeake Bay program modeling system: Overview and recommendations for future development. Ecological Modelling, 2021, 456, 109635.	1.2	30
6	Temporal inequality of nutrient and sediment transport: a decision-making framework for temporal targeting of load reduction goals. Environmental Research Letters, 2021, 16, 014005.	2.2	9
7	Mitigating lake eutrophication through stakeholder-driven hydrologic modeling of agricultural conservation practices: A case study of Lake Macatawa, Michigan. Journal of Great Lakes Research, 2021, 47, 1710-1725.	0.8	8
8	Riparian buffer effectiveness as a function of buffer design and input loads. Journal of Environmental Quality, 2020, 49, 1599-1611.	1.0	12
9	Application of the Soil and Water Assessment Tool (SWAT) at Field Scale: Categorizing Methods and Review of Applications. Transactions of the ASABE, 2020, 63, 513-522.	1.1	16
10	Addressing the spatial disconnect between nationalâ€scale total maximum daily loads and localized land management decisions. Journal of Environmental Quality, 2020, 49, 613-627.	1.0	16
11	Headwater stream condition and nutrient runoff: Relating SWAT to empirical ecological measures in an agricultural watershed in Pennsylvania. Journal of Environmental Quality, 2020, 49, 557-568.	1.0	5
12	Projected heat stress challenges and abatement opportunities for U.S. milk production. PLoS ONE, 2019, 14, e0214665.	1,1	39
13	Development of PLEAD: A Database Containing Eventâ€based Runoff Phosphorus Loadings from Agricultural Fields. Journal of Environmental Quality, 2019, 48, 510-517.	1.0	3
14	Load-discharge relationships reveal the efficacy of manure application practices on phosphorus and total solids losses from agricultural fields. Agriculture, Ecosystems and Environment, 2019, 272, 19-28.	2.5	10
15	The effects of disproportional load contributions on quantifying vegetated filter strip sediment trapping efficiencies. Stochastic Environmental Research and Risk Assessment, 2018, 32, 2369-2380.	1.9	5
16	Conservation dairy farming impact on water quality in a karst watershed in northeastern US. Agricultural Systems, 2018, 165, 187-196.	3.2	22
17	Evaluating Concentrated Flowpaths in Riparian Forest Buffer Contributing Areas Using LiDAR Imagery and Topographic Metrics. Remote Sensing, 2018, 10, 614.	1.8	21
18	Evaluation of Phosphorus Site Assessment Tools: Lessons from the USA. Journal of Environmental Quality, 2017, 46, 1250-1256.	1.0	39

ΤΑΜΙΕ L VEITH

#	Article	IF	CITATIONS
19	Simulating hydrological and nonpoint source pollution processes in a karst watershed: A variable source area hydrology model evaluation. Agricultural Water Management, 2017, 180, 212-223.	2.4	55
20	The Promise, Practice, and State of Planning Tools to Assess Site Vulnerability to Runoff Phosphorus Loss. Journal of Environmental Quality, 2017, 46, 1243-1249.	1.0	19
21	Analyzing Withinâ€County Hydrogeomorphological Characteristics as a Precursor to Phosphorus Index Modifications. Journal of Environmental Quality, 2017, 46, 1365-1371.	1.0	2
22	Seasonal Manure Application Timing and Storage Effects on Field―and Watershed‣evel Phosphorus Losses. Journal of Environmental Quality, 2017, 46, 1403-1412.	1.0	31
23	Declining Atmospheric Sulfate Deposition in an Agricultural Watershed in Central Pennsylvania, USA. Agricultural and Environmental Letters, 2016, 1, 160039.	0.8	7
24	Suburface application enhances benefits of manure redistribution. Crops & Soils, 2016, 49, 48-51.	0.1	1
25	Improved Simulation of Edaphic and Manure Phosphorus Loss in SWAT. Journal of Environmental Quality, 2016, 45, 1215-1225.	1.0	42
26	Subsurface Application Enhances Benefits of Manure Redistribution. Agricultural and Environmental Letters, 2016, 1, 150003.	0.8	15
27	Predicting phosphorus dynamics in complex terrains using a variable source area hydrology model. Hydrological Processes, 2015, 29, 588-601.	1.1	54
28	Navigating spatial and temporal complexity in developing a long-term land use database for an agricultural watershed. Journal of Soils and Water Conservation, 2015, 70, 288-296.	0.8	11
29	A decade of conservation effects assessment research by the USDA Agricultural Research Service: Progress overview and future outlook. Journal of Soils and Water Conservation, 2014, 69, 365-373.	0.8	37
30	Optimizing ecosystem function by manipulating pasture community composition. Basic and Applied Ecology, 2013, 14, 630-641.	1.2	13
31	Integrated watershed- and farm-scale modeling framework for targeting critical source areas while maintaining farm economic viability. Journal of Environmental Management, 2013, 114, 381-394.	3.8	74
32	Topographic placement of management practices in riparian zones to reduce water quality impacts from pastures. Landscape Ecology, 2012, 27, 1307-1319.	1.9	22
33	U.S. Department of Agriculture Agricultural Research Service Mahantango Creek Watershed, Pennsylvania, United States: Physiography and history. Water Resources Research, 2011, 47, .	1.7	42
34	U.S. Department of Agriculture Agricultural Research Service Mahantango Creek Watershed, Pennsylvania, United States: Longâ€ŧerm precipitation database. Water Resources Research, 2011, 47, .	1.7	7
35	U.S. Department of Agriculture Agricultural Research Service Mahantango Creek Watershed, Pennsylvania, United States: Longâ€ŧerm stream discharge database. Water Resources Research, 2011, 47, .	1.7	9
36	U.S. Department of Agriculture Agricultural Research Service Mahantango Creek Watershed, Pennsylvania, United States: Longâ€ŧerm water quality database. Water Resources Research, 2011, 47, .	1.7	11

TAMIE L VEITH

#	Article	IF	CITATIONS
37	Environmental and Economic Comparisons of Manure Application Methods in Farming Systems. Journal of Environmental Quality, 2011, 40, 438-448.	1.0	50
38	Parameter Sensitivity and Uncertainty in SWAT: A Comparison Across Five USDA-ARS Watersheds. Transactions of the ASABE, 2010, 53, 1477-1486.	1.1	36
39	Determination of Critical Source Areas for Phosphorus Loss: Lake Champlain Basin, Vermont. Transactions of the ASABE, 2010, 53, 1595-1604.	1.1	55
40	Improving Daily Water Yield Estimates in the Little River Watershed: SWAT Adjustments. Transactions of the ASABE, 2009, 52, 69-79.	1.1	26
41	Exploring economically and environmentally viable northeastern US dairy farm strategies for coping with rising corn grain prices. Journal of Dairy Science, 2009, 92, 4086-4099.	1.4	10
42	Modeling a Small, Northeastern Watershed with Detailed, Field-Level Data. Transactions of the ASABE, 2008, 51, 471-483.	1.1	19
43	Suitability of SWAT for the Conservation Effects Assessment Project: Comparison on USDA Agricultural Research Service Watersheds. Journal of Hydrologic Engineering - ASCE, 2007, 12, 173-189.	0.8	284
44	Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 2007, 50, 885-900.	1.1	7,902
45	Economic and Phosphorus-Related Effects of Precision Feeding and Forage Management at a Farm Scale. Journal of Dairy Science, 2007, 90, 3700-3715.	1.4	19
46	Perspectives on the potential for hydropedology to improve watershed modeling of phosphorus loss. Geoderma, 2006, 131, 299-307.	2.3	32
47	WATERSHED LEVEL BEST MANAGEMENT PRACTICE SELECTION AND PLACEMENT IN THE TOWN BROOK WATERSHED, NEW YORK ¹ . Journal of the American Water Resources Association, 2006, 42, 1565-1581.	1.0	58
48	Quantifying the Effects of Phosphorus Control Best Management Practices. , 2006, , 351-381.		4
49	WATERSHED SCALE MODELING OF CRITICAL SOURCE AREAS OF RUNOFF GENERATION AND PHOSPHORUS TRANSPORT. Journal of the American Water Resources Association, 2005, 41, 361-377.	1.0	70
50	COMPARISON OF MEASURED AND SIMULATED PHOSPHORUS LOSSES WITH INDEXED SITE VULNERABILITY. Transactions of the American Society of Agricultural Engineers, 2005, 48, 557-565.	0.9	54
51	Evaluation of Phosphorus Transport in Surface Runoff from Packed Soil Boxes. Journal of Environmental Quality, 2004, 33, 1413.	1.0	90
52	COST-EFFECTIVE BMP PLACEMENT: OPTIMIZATION VERSUS TARGETING. Transactions of the American Society of Agricultural Engineers, 2004, 47, 1585-1594.	0.9	64
53	FARM–LEVEL OPTIMIZATION OF BMP PLACEMENT FOR COST–EFFECTIVE POLLUTION REDUCTION. Transactio of the American Society of Agricultural Engineers, 2004, 47, 1923-1931.	ns 0.9	117
54	OPTIMIZATION PROCEDURE FOR COST EFFECTIVE BMP PLACEMENT AT A WATERSHED SCALE. Journal of the American Water Resources Association, 2003, 39, 1331-1343.	1.0	94

#	Article	IF	CITATIONS
55	Netsim: Javaâ,"¢-based simulation for the World Wide Web. Computers and Operations Research, 1999, 26, 607-621.	2.4	18