
Jian Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1259613/publications.pdf Version: 2024-02-01

LIAN FENC

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
2	Different Presynaptic Roles of Synapsins at Excitatory and Inhibitory Synapses. Journal of Neuroscience, 2004, 24, 11368-11380.	1.7	315
3	Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP–32 and spinophilin. Nature Neuroscience, 1999, 2, 13-17.	7.1	280
4	Parkin Binds to α/β Tubulin and Increases their Ubiquitination and Degradation. Journal of Neuroscience, 2003, 23, 3316-3324.	1.7	277
5	Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Human Molecular Genetics, 2004, 13, 1745-1754.	1.4	221
6	Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. Nature Communications, 2012, 3, 668.	5.8	218
7	Selective Vulnerability of Dopaminergic Neurons to Microtubule Depolymerization. Journal of Biological Chemistry, 2005, 280, 34105-34112.	1.6	163
8	Regulation of Neurotransmitter Release by Synapsin III. Journal of Neuroscience, 2002, 22, 4372-4380.	1.7	158
9	Molecular Determinants of Synapsin Targeting to Presynaptic Terminals. Journal of Neuroscience, 2004, 24, 3711-3720.	1.7	125
10	Parkin Stabilizes Microtubules through Strong Binding Mediated by Three Independent Domains. Journal of Biological Chemistry, 2005, 280, 17154-17162.	1.6	117
11	Synapsin III: Developmental Expression, Subcellular Localization, and Role in Axon Formation. Journal of Neuroscience, 2000, 20, 3736-3744.	1.7	108
12	Cell cycle and p53 gate the direct conversion of human fibroblasts to dopaminergic neurons. Nature Communications, 2015, 6, 10100.	5.8	108
13	Parkin Increases Dopamine Uptake by Enhancing the Cell Surface Expression of Dopamine Transporter. Journal of Biological Chemistry, 2004, 279, 54380-54386.	1.6	104
14	Parkin Mutations Reduce the Complexity of Neuronal Processes in iPSC-Derived Human Neurons. Stem Cells, 2015, 33, 68-78.	1.4	95
15	Parkin Protects Dopaminergic Neurons against Microtubule-depolymerizing Toxins by Attenuating Microtubule-associated Protein Kinase Activation. Journal of Biological Chemistry, 2009, 284, 4009-4017.	1.6	84
16	Microtubule: A Common Target for Parkin and Parkinson's Disease Toxins. Neuroscientist, 2006, 12, 469-476.	2.6	75
17	Parkin Suppresses the Expression of Monoamine Oxidases. Journal of Biological Chemistry, 2006, 281, 8591-8599.	1.6	71
18	Parkin degrades estrogen-related receptors to limit the expression of monoamine oxidases. Human Molecular Genetics, 2011, 20, 1074-1083.	1.4	61

Jian Feng

#	Article	IF	CITATIONS
19	Neurotrophic Factors Stabilize Microtubules and Protect against Rotenone Toxicity on Dopaminergic Neurons. Journal of Biological Chemistry, 2006, 281, 29391-29400.	1.6	51
20	Rotenone selectively kills serotonergic neurons through a microtubule-dependent mechanism. Journal of Neurochemistry, 2007, 103, 070622100229004-???.	2.1	50
21	Expression of synapsin III in nerve terminals and neurogenic regions of the adult brain. Journal of Comparative Neurology, 2002, 454, 105-114.	0.9	48
22	Activation of Group III Metabotropic Glutamate Receptors Attenuates Rotenone Toxicity on Dopaminergic Neurons through a Microtubule-Dependent Mechanism. Journal of Neuroscience, 2006, 26, 4318-4328.	1.7	46
23	Early involvement of synapsin III in neural progenitor cell development in the adult hippocampus. Journal of Comparative Neurology, 2008, 507, 1860-1870.	0.9	46
24	Transient inhibition of mTOR in human pluripotent stem cells enables robust formation of mouse-human chimeric embryos. Science Advances, 2020, 6, eaaz0298.	4.7	44
25	Modeling Parkinson's Disease Using Patient-specific Induced Pluripotent Stem Cells. Journal of Parkinson's Disease, 2018, 8, 479-493.	1.5	34
26	Induced dopaminergic neurons: A new promise for Parkinson's disease. Redox Biology, 2017, 11, 606-612.	3.9	29
27	Dopamine Induces Oscillatory Activities in Human Midbrain Neurons with Parkin Mutations. Cell Reports, 2017, 19, 1033-1044.	2.9	27
28	Utilization of TALEN and CRISPR/Cas9 technologies for gene targeting and modification. Experimental Biology and Medicine, 2015, 240, 1065-1070.	1.1	20
29	Generation of Naivetropic Induced Pluripotent Stem Cells from Parkinson's Disease Patients for High-Efficiency Genetic Manipulation and Disease Modeling. Stem Cells and Development, 2015, 24, 2591-2604.	1.1	19
30	Redefining Parkinson's Disease Research Using Induced Pluripotent Stem Cells. Current Neurology and Neuroscience Reports, 2012, 12, 392-398.	2.0	17
31	Inhibition of Histone Methyltransferases EHMT1/2 Reverses Amyloid-β-Induced Loss of AMPAR Currents in Human Stem Cell-Derived Cortical Neurons. Journal of Alzheimer's Disease, 2019, 70, 1175-1185.	1.2	14
32	<scp>RNA</scp> splicing regulators play critical roles in neurogenesis. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1728.	3.2	14
33	Attenuation of PRRX2 and HEY2 enables efficient conversion of adult human skin fibroblasts to neurons. Biochemical and Biophysical Research Communications, 2019, 516, 765-769.	1.0	11
34	Generation of human A9 dopaminergic pacemakers from induced pluripotent stem cells. Molecular Psychiatry, 2022, 27, 4407-4418.	4.1	11
35	Kinetic barriers in transdifferentiation. Cell Cycle, 2016, 15, 1019-1020.	1.3	6
36	TET1 Deficiency Impairs Morphogen-free Differentiation of Human Embryonic Stem Cells to Neuroectoderm. Scientific Reports, 2020, 10, 10343.	1.6	6

Jian Feng

#	Article	IF	CITATIONS
37	Generation of mouse–human chimeric embryos. Nature Protocols, 2021, 16, 3954-3980.	5.5	5
38	Entropy illustrates the flexibility of Chinese. Nature, 2001, 410, 1021-1021.	13.7	4
39	Direct conversion of adult human retinal pigmented epithelium cells to neurons with photoreceptor properties. Experimental Biology and Medicine, 2021, 246, 240-248.	1.1	4
40	Molecular Features of Parkinson's Disease in Patientâ€Đerived Midbrain Dopaminergic Neurons. Movement Disorders, 2021, , .	2.2	4
41	Control of protein phosphate 1 in the dendrite. Biochemical Society Transactions, 1999, 27, A72-A72.	1.6	Ο
42	The role of parkin in Parkinson's disease: a stem cell perspective. Neurodegenerative Disease Management, 2012, 2, 239-241.	1.2	0
43	The normal parkin sequence. Movement Disorders, 2012, 27, 463-464.	2.2	Ο
44	Modeling the pathophysiology of Parkinson's disease in patient-specific neurons. Experimental Biology and Medicine, 2021, 246, 298-304.	1.1	0
45	Mouse embryonic stem cells require multiple amino acids. Experimental Biology and Medicine, 2022, 247, 1379-1387.	1.1	0