
Clive G Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1259544/publications.pdf Version: 2024-02-01

CLIVE CLONES

#	Article	IF	CITATIONS
1	Controls on Ecosystem Structure and Function. , 2021, , 249-264.		0
2	Crab Burrowing Limits Surface Litter Accumulation in a Temperate Salt Marsh: Implications for Ecosystem Functioning and Connectivity. Ecosystems, 2018, 21, 1000-1012.	3.4	10
3	Opportunities for Protecting and Restoring Tropical Coastal Ecosystems by Utilizing a Physical Connectivity Approach. Frontiers in Marine Science, 2017, 4, .	2.5	26
4	Integrating ecosystem engineering and food webs. Oikos, 2014, 123, 513-524.	2.7	87
5	Under niche construction: an operational bridge between ecology, evolution, and ecosystem science. Ecological Monographs, 2014, 84, 245-263.	5.4	148
6	Toward an integrated ecosystem perspective of invasive species impacts. Acta Oecologica, 2014, 54, 131-138.	1.1	39
7	Potential for landscape-scale positive interactions among tropical marine ecosystems. Marine Ecology - Progress Series, 2014, 503, 289-303.	1.9	86
8	Controls on Ecosystem Structure and Function. , 2013, , 215-230.		0
9	Ecosystem engineering, environmental decay and environmental states of landscapes. Oikos, 2013, 122, 591-600.	2.7	22
10	Integrating Ecology and Environmental Ethics: Earth Stewardship in the Southern End of the Americas. BioScience, 2012, 62, 226-236.	4.9	132
11	Ecological engineering: From concepts to applications. Ecological Engineering, 2012, 45, 1-4.	3.6	8
12	Ecosystem engineers and geomorphological signatures in landscapes. Geomorphology, 2012, 157-158, 75-87.	2.6	82
13	A framework for understanding physical ecosystem engineering by organisms. Oikos, 2010, 119, 1862-1869.	2.7	184
14	Interactions among patch area, forest structure and water fluxes in a fogâ€inundated forest ecosystem in semiâ€arid Chile. Functional Ecology, 2010, 24, 909-917.	3.6	23
15	A Darwinian view of metabolism: molecular properties determine fitness. Journal of Experimental Botany, 2009, 60, 719-726.	4.8	94
16	Quantifying a dynamic risk landscape: heterogeneous predator activity and implications for prey persistence. Ecology, 2009, 90, 240-251.	3.2	17
17	A competitive coexistence principle?. Oikos, 2009, 118, 1570-1578.	2.7	14
18	Regeneration patterns and persistence of the fogâ€dependent Fray Jorge forest in semiarid Chile during the past two centuries. Global Change Biology, 2008, 14, 161-176.	9.5	41

#	Article	IF	CITATIONS
19	Leaf- and shoot-level plasticity in response to different nutrient and water availabilities. Tree Physiology, 2007, 27, 1731-1739.	3.1	37
20	Variation in Eastern Cottonwood (<i>Populus deltoides</i> Bartr.) Phloem Sap Content Caused by Leaf Development May Affect Feeding Site Selection Behavior of the Aphid, <i>Chaitophorous populicola</i> Thomas (Homoptera: Aphididae). Environmental Entomology, 2007, 36, 1212-1225.	1.4	36
21	SPATIAL SELECTION AND INHERITANCE: APPLYING EVOLUTIONARY CONCEPTS TO POPULATION DYNAMICS IN HETEROGENEOUS SPACE. Ecology, 2007, 88, 1112-1118.	3.2	16
22	1 On the purpose, meaning, and usage of the physical ecosystem engineering concept. Theoretical Ecology Series, 2007, , 3-24.	0.2	31
23	Identificación de los mecanismos subyacentes a la invasión de Castor canadensis (Rodentia) en el archipiélago de Tierra del Fuego, Chile. Revista Chilena De Historia Natural, 2007, 80, .	1.2	22
24	Ecosystem engineering in space and time. Ecology Letters, 2007, 10, 153-164.	6.4	488
25	The third party. Journal of Vegetation Science, 2007, 18, 771-776.	2.2	19
26	Physical Ecosystem Engineers as Agents of Biogeochemical Heterogeneity. BioScience, 2006, 56, 227.	4.9	127
27	The Concept of Organisms as Ecosystem Engineers Ten Years On: Progress, Limitations, and Challenges. BioScience, 2006, 56, 203.	4.9	445
28	Assessing impacts of ecosystem engineers on community organization: a general approach illustrated by effects of a high-Andean cushion plant. Oikos, 2006, 115, 369-385.	2.7	120
29	Linking ecosystem engineers toÂsoil processes: aÂframework using theÂJenny State Factor Equation. European Journal of Soil Biology, 2006, 42, S39-S53.	3.2	46
30	Do we need a new hypothesis to explain plant VOC emissions?. Trends in Plant Science, 2006, 11, 112-113.	8.8	21
31	Negative regulation of defence and stress genes by EAR-motif-containing repressors. Trends in Plant Science, 2006, 11, 109-112.	8.8	213
32	Using ecosystem engineers to restore ecological systems. Trends in Ecology and Evolution, 2006, 21, 493-500.	8.7	371
33	PHYSIOLOGICAL AND DEVELOPMENTAL EFFECTS OF O3ON COTTONWOOD GROWTH IN URBAN AND RURAL SITES. , 2006, 16, 2368-2381.		18
34	Predictability of ecosystem engineering effects on species richness across environmental variability and spatial scales. Journal of Ecology, 2006, 94, 815-824.	4.0	106
35	Rain Forest Islands in the Chilean Semiarid Region: Fog-dependency, Ecosystem Persistence and Tree Regeneration. Ecosystems, 2006, 9, 598-608.	3.4	100
36	The Contribution of Crab Burrow Excavation to Carbon Availability in Surficial Salt-marsh Sediments. Ecosystems, 2006, 9, 647-658.	3.4	79

#	Article	IF	CITATIONS
37	Comparative Predation on Naturally Occurring Gypsy Moth (Lepidoptera: Lymantriidae) Pupae and Deployed Freeze-Dried Pupae: Table 1 Environmental Entomology, 2006, 35, 293-296.	1.4	5
38	LIMITED DISPERSAL AND HETEROGENEOUS PREDATION RISK SYNERGISTICALLY ENHANCE PERSISTENCE OF RARE PREY. Ecology, 2005, 86, 3139-3148.	3.2	14
39	Variation in isoprene emission fromQuercus rubra: Sources, causes, and consequences for estimating fluxes. Journal of Geophysical Research, 2005, 110, .	3.3	44
40	USE OF TRACK PLATES TO QUANTIFY PREDATION RISK AT SMALL SPATIAL SCALES. Journal of Mammalogy, 2005, 86, 991-996.	1.3	28
41	The evolution of plant biochemistry and the implications for physiology. , 2004, , 67-83.		1
42	Patch dynamics in a landscape modified by ecosystem engineers. Oikos, 2004, 105, 336-348.	2.7	122
43	Type 3 functional response of mice to gypsy moth pupae: is it stabilizing?. Oikos, 2004, 107, 592-602.	2.7	24
44	PREDICTING EFFECTS OF ECOSYSTEM ENGINEERS ON PATCH-SCALE SPECIES RICHNESS FROM PRIMARY PRODUCTIVITY. Ecology, 2004, 85, 2071-2081.	3.2	127
45	Natural Products — A Simple Model to Explain Chemical Diversity. ChemInform, 2003, 34, no.	0.0	0
46	Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos, 2003, 101, 79-90.	2.7	811
47	Urbanization effects on tree growth in the vicinity of New York City. Nature, 2003, 424, 183-187.	27.8	355
48	Natural products ? a simple model to explain chemical diversity. Natural Product Reports, 2003, 20, 382.	10.3	399
49	A Framework for a Theory of Ecological Boundaries. BioScience, 2003, 53, 750.	4.9	325
50	LOCAL VS. LANDSCAPE CONTROLS ON PLANT SPECIES RICHNESS IN BEAVER MEADOWS. Ecology, 2003, 84, 3162-3173.	3.2	81
51	DIURNAL VARIATION IN THE BASAL EMISSION RATE OF ISOPRENE. , 2003, 13, 269-278.		41
52	<i>Chrysomela scripta</i> , <i>Plagiodera versicolora</i> (Coleoptera: Chrysomelidae), and <i>Trichoplusia ni</i> (Lepidoptera: Noctuidae) Track Specific Leaf Developmental Stages. Environmental Entomology, 2002, 31, 836-843.	1.4	13
53	Insect Defoliation and Nitrogen Cycling in Forests. BioScience, 2002, 52, 335.	4.9	217
54	An ecosystem engineer, the beaver, increases species richness at the landscape scale. Oecologia, 2002, 132, 96-101.	2.0	500

#	Article	IF	CITATIONS
55	Effects of Acorn Production and Mouse Abundance on Abundance and Borrelia burgdorferi Infection Prevalence of Nymphal Ixodes scapularis Ticks. Vector-Borne and Zoonotic Diseases, 2001, 1, 55-63.	1.5	101
56	Plants as resource mosaics: a functional model for predicting patterns of within-plant resource heterogeneity to consumers based on vascular architecture and local environmental variability. Oikos, 2001, 94, 493-504.	2.7	107
57	Biosynthesis of plant phenolic compounds in elevated atmospheric CO2. Global Change Biology, 2000, 6, 497-506.	9.5	112
58	The evolution of secondary metabolism - a unifying model. Molecular Microbiology, 2000, 37, 989-994.	2.5	198
59	Secondary metabolism and the risks of GMOs. Nature, 1999, 400, 13-14.	27.8	20
60	Title is missing!. Journal of Chemical Ecology, 1999, 25, 635-656.	1.8	46
61	Defoliation effects on isoprene emission from Populus deltoides. Oecologia, 1999, 118, 333-339.	2.0	26
62	The fraction of expanding to expanded leaves determines the biomass response of Populus to elevated CO 2. Oecologia, 1999, 121, 193-200.	2.0	15
63	A Protein Competition Model of Phenolic Allocation. Oikos, 1999, 86, 27.	2.7	343
64	Avenues of discovery in bioprospecting. Nature, 1998, 393, 617-617.	27.8	6
65	Integrative ecology and the dynamics of species in oak forests. Integrative Biology: Issues, News, and Reviews, 1998, 1, 178-186.	0.5	11
66	Caterpillar guts and ammonia volatilization: retention of nitrogen by gypsy moth larvae consuming oak foliage. Oecologia, 1998, 117, 513-516.	2.0	15
67	Mast seeding and Lyme disease. Trends in Ecology and Evolution, 1998, 13, 506.	8.7	5
68	Chain Reactions Linking Acorns to Gypsy Moth Outbreaks and Lyme Disease Risk. Science, 1998, 279, 1023-1026.	12.6	393
69	Impacts of Rising Atmospheric Carbon Dioxide on Model Terrestrial Ecosystems. Science, 1998, 280, 441-443.	12.6	212
70	The Self-Identity of Ecological Units. Oikos, 1998, 82, 253.	2.7	66
71	Effects of Nitrogen Fertilization on Leaf Chemistry and Beetle Feeding Are Mediated by Leaf Development. Oikos, 1998, 82, 502.	2.7	45
72	Integrative ecology and the dynamics of species in oak forests. Integrative Biology: Issues, News, and Reviews, 1998, 1, 178-186.	0.5	2

#	Article	IF	CITATIONS
73	Ecosystem engineering by organisms: why semantics matters. Trends in Ecology and Evolution, 1997, 12, 275.	8.7	36
74	POSITIVE AND NEGATIVE EFFECTS OF ORGANISMS AS PHYSICAL ECOSYSTEM ENGINEERS. Ecology, 1997, 78, 1946-1957.	3.2	1,807
75	Of Mice and Mast. BioScience, 1996, 46, 323-330.	4.9	351
76	A Correction to "Of Mice and Mast". BioScience, 1996, 46, 565-565.	4.9	1
77	Effects of Damage to Living Plants on Leaf Litter Quality. , 1996, 6, 269-275.		147
78	An Explanation of Secondary Product "Redundancy―, 1996, , 295-312.		18
79	Plants may talk, but can they hear?. Trends in Ecology and Evolution, 1995, 10, 371.	8.7	12
80	Organisms as Ecosystem Engineers. , 1994, , 130-147.		735
81	Organisms as Ecosystem Engineers. Oikos, 1994, 69, 373.	2.7	4,197
82	Effects of ozone on interactions between plants, consumers and decomposers. , 1994, , 339-364.		8
83	Control of systemically induced herbivore resistance by plant vascular architecture. Oecologia, 1993, 93, 452-456.	2.0	112
84	Linking species and ecosystem perspectives. Trends in Ecology and Evolution, 1993, 8, 311-313.	8.7	23
85	Defensive Secretion Production in Lubber Grasshoppers (Orthoptera: Romaleidae): Influence of Age, Sex, Diet, and Discharge Frequency. Annals of the Entomological Society of America, 1992, 85, 96-102.	2.5	27
86	Estimating Field Hatch of Gypsy Moth (Lepidoptera: Lymantriidae). Environmental Entomology, 1992, 21, 276-280.	1.4	2
87	Plant Chemistry and Insect Species Richness of British Umbellifers. Journal of Animal Ecology, 1991, 60, 767.	2.8	57
88	On the evolution of plant secondary chemical diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 1991, 333, 273-280.	4.0	222
89	Density-Dependent Positive Feedbacks between Consumers and Their Resources. , 1991, , 331-340.		5
90	Plant Stress and Insect Herbivory: Toward an Integrated Perspective. , 1991, , 249-280.		64

#	Article	IF	CITATIONS
91	Estimating Gypsy Moth (Lepidoptera: Lymantriidae) Fecundity in the Field: Comparison of Data from North America and Sardinia, Italy. Environmental Entomology, 1990, 19, 108-110.	1.4	5
92	Fertilization of the desert soil by rock-eating snails. Nature, 1990, 346, 839-841.	27.8	65
93	A generalist herbivore in a specialist mode Metabolic, sequestrative, and defensive consequences. Journal of Chemical Ecology, 1990, 16, 223-244.	1.8	28
94	Exposure of cottonwood plants to ozone alters subsequent leaf decomposition. Oecologia, 1990, 82, 248-250.	2.0	30
95	Reduction in diet breadth results in sequestration of plant chemicals and increases efficacy of chemical defense in a generalist grasshopper. Journal of Chemical Ecology, 1989, 15, 1811-1822.	1.8	45
96	Measuring plant protein with the Bradford assay. Journal of Chemical Ecology, 1989, 15, 979-992.	1.8	232
97	Positive feedback of consumer population density on resource supply. Trends in Ecology and Evolution, 1989, 4, 234-238.	8.7	36
98	Measuring herbivory. Ecological Entomology, 1989, 14, 479-481.	2.2	14
99	Leaf disc size and insect feeding preference: implications for assays and studies on induction of plant defense. Entomologia Experimentalis Et Applicata, 1988, 47, 167-172.	1.4	22
100	What is chemical ecology?. Journal of Chemical Ecology, 1988, 14, 727-730.	1.8	5
101	Plant stress and insect behavior: cottonwood, ozone and the feeding and oviposition preference of a beetle. Oecologia, 1988, 76, 51-56.	2.0	72
102	Plant stress and insect performance: cottonwood, ozone and a leaf beetle. Oecologia, 1988, 76, 57-61.	2.0	54
103	Interactions between an acute ozone dose, eastern cottonwood, and Marssonina leaf spot: implications for pathogen community dynamics. Canadian Journal of Botany, 1988, 66, 863-868.	1.1	16
104	Acute Ozone Stress on Eastern Cottonwood (Populus deltoides Bartr.) and the Pest Potential of the Aphid, Chaitophorus populicola Thomas (Homoptera: Aphididae). Environmental Entomology, 1988, 17, 207-212.	1.4	39
105	Acid Rain Report. Science, 1988, 239, 128-128.	12.6	0
106	Diet Breadth and Insect Chemical Defenses: A Generalist Grasshopper and General Hypotheses. , 1988, , 477-512.		11
107	Herbivory in Rocks and the Weathering of a Desert. Science, 1987, 236, 1098-1099.	12.6	100
108	Field Estimation of Fecundity of Gypsy Moth (Lepidoptera: Lymantriidae). Environmental Entomology, 1987, 16, 165-167.	1.4	9

#	Article	IF	CITATIONS
109	Effects of diet breadth on autogenous chemical defense of a generalist grasshopper. Journal of Chemical Ecology, 1987, 13, 283-297.	1.8	35
110	Prey-specific attack behaviour in the southern grasshopper mouse, Onychomys torridus (Coues). Animal Behaviour, 1986, 34, 295-297.	1.9	9
111	Olfactorily mediated attack suppression in the southern grasshopper mouse toward an unpalatable prey. Behavioural Processes, 1986, 13, 77-83.	1.1	9
112	Idiosyncratic variation in chemical defenses among individual generalist grasshoppers. Journal of Chemical Ecology, 1986, 12, 749-761.	1.8	32
113	Chemical Defense in Taeniopoda eques (Orthoptera: Acrididae): Role of the Metathoracic Secretion. Annals of the Entomological Society of America, 1985, 78, 451-455.	2.5	39
114	Mechanism of dye response and interference in the Bradford protein assay. Analytical Biochemistry, 1985, 151, 369-374.	2.4	515
115	Is sequestration structure-specific in the milkweed bug, Oncopeltus fasciatus?. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1983, 76, 283-284.	0.2	1
116	Phytochemical Variation, Colonization, and Insect Communities: the Case of Bracken Fern (Pteridium) Tj ETQq0 () 0 rgBT /C	verlock 10 T
117	Chemistry and possible roles of cuticular alcohols of the larval atlas moth. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1982, 73, 797-801.	0.2	2
	PATTERN AND PROCESS IN INSECT FEEDING BEHAVIOUR: A QUANTITATIVE ANALYSIS OF THE MEXICAN BEAN		

118	BEETLE, <i>EPILACHNA VARIVESTIS</i> . Entomologia Experimentalis Et Applicata, 1981, 30, 254-264.	1.4	15
119	2-Furaldehyde from baldcypress. Journal of Chemical Ecology, 1981, 7, 89-101.	1.8	8
120	Baldcypress allelochemics and the inhibition of silkworm enteric microorganisms Some Ecological Considerations. Journal of Chemical Ecology, 1981, 7, 103-114.	1.8	12
121	Resistance of Pteridium aquilinum to attack by non-adapted phytophagous insects. Biochemical Systematics and Ecology, 1979, 7, 95-101.	1.3	32
122	Some allelochemicals of Pteridium aquilinum and their involvement in resistance to Pieris brassicae. Biochemical Systematics and Ecology, 1979, 7, 187-192.	1.3	58
123	The role of phytoecdysteroids in bracken fern,Pteridium aquilinum (L.) Kuhn as a defense against phytophagous insect attack. Journal of Chemical Ecology, 1978, 4, 117-138.	1.8	66