
Dominique Weil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1259268/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	P-Body Purification Reveals the Condensation of Repressed mRNA Regulons. Molecular Cell, 2017, 68, 144-157.e5.	9.7	581
2	The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. Journal of Cell Science, 2005, 118, 981-992.	2.0	262
3	Translationally Repressed mRNA Transiently Cycles through Stress Granules during Stress. Molecular Biology of the Cell, 2008, 19, 4469-4479.	2.1	197
4	P-Bodies: Cytosolic Droplets for Coordinated mRNA Storage. Trends in Genetics, 2018, 34, 612-626.	6.7	194
5	Unravelling the ultrastructure of stress granules and associated P-bodies in human cells. Journal of Cell Science, 2009, 122, 3619-3626.	2.0	175
6	CPEB Interacts with an Ovary-specific eIF4E and 4E-T in Early Xenopus Oocytes. Journal of Biological Chemistry, 2007, 282, 37389-37401.	3.4	161
7	RNA is a critical element for the sizing and the composition of phase-separated RNA–protein condensates. Nature Communications, 2019, 10, 3230.	12.8	159
8	Esophageal atresia: Data from a national cohort. Journal of Pediatric Surgery, 2013, 48, 1664-1669.	1.6	140
9	P-body assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes. Molecular Biology of the Cell, 2015, 26, 2579-2595.	2.1	137
10	GC content shapes mRNA storage and decay in human cells. ELife, 2019, 8, .	6.0	121
11	In Vivo Kinetics of mRNA Splicing and Transport in Mammalian Cells. Molecular and Cellular Biology, 2002, 22, 6706-6718.	2.3	120
12	Role of p54 RNA Helicase Activity and Its C-terminal Domain in Translational Repression, P-body Localization and Assembly. Molecular Biology of the Cell, 2009, 20, 2464-2472.	2.1	111
13	Regulation of pim and myb mRNA accumulation by interleukin 2 and interleukin 3 in murine hematopoietic cell lines. Journal of Biological Chemistry, 1988, 263, 17615-20.	3.4	103
14	Targeting the Kinesin Eg5 to Monitor siRNA Transfection in Mammalian Cells. BioTechniques, 2002, 33, 1244-1248.	1.8	102
15	Mitochondria Associate with P-bodies and Modulate MicroRNA-mediated RNA Interference. Journal of Biological Chemistry, 2011, 286, 24219-24230.	3.4	98
16	The DDX6–4E-T interaction mediates translational repression and P-body assembly. Nucleic Acids Research, 2016, 44, 6318-6334.	14.5	97
17	Multiple binding of repressed mRNAs by the P-body protein Rck/p54. Rna, 2012, 18, 1702-1715.	3.5	79
18	GW body disassembly triggered by siRNAs independently of their silencing activity. Nucleic Acids Research, 2007, 35, 4715-4727.	14.5	73

Dominique Weil

#	Article	IF	CITATIONS
19	CDC2L5, a Cdk-like kinase with RS domain, interacts with the ASF/SF2-associated protein p32 and affects splicing in vivo. Journal of Cellular Biochemistry, 2006, 99, 890-904.	2.6	58
20	Distinct functions of maternal and somatic Pat1 protein paralogs. Rna, 2010, 16, 2094-2107.	3.5	50
21	Rare De Novo Missense Variants in RNA Helicase DDX6 Cause Intellectual Disability and Dysmorphic Features and Lead to P-Body Defects and RNA Dysregulation. American Journal of Human Genetics, 2019, 105, 509-525.	6.2	50
22	Wandering spleen in children: multicenter retrospective study. Journal of Pediatric Surgery, 2010, 45, 1519-1524.	1.6	48
23	Inherited deficiency of stress granule ZNFX1 in patients with monocytosis and mycobacterial disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	47
24	Nucleocytoplasmic Traffic of CPEB1 and Accumulation in Crm1 Nucleolar Bodies. Molecular Biology of the Cell, 2009, 20, 176-187.	2.1	45
25	<i>CPEB1</i> , a novel gene silenced in gastric cancer: a <i>Drosophila</i> approach. Gut, 2012, 61, 1115-1123.	12.1	41
26	Predominant Expression of Murine Bmx Tyrosine Kinase in the Granulo-Monocytic Lineage. Blood, 1997, 90, 4332-4340.	1.4	37
27	In vivo cooperation between introns during pre-mRNA processing Genes and Development, 1993, 7, 2194-2205.	5.9	36
28	RNA-related nuclear functions of human Pat1b, the P-body mRNA decay factor. Molecular Biology of the Cell, 2012, 23, 213-224.	2.1	36
29	Dual RNA Processing Roles of Pat1b via Cytoplasmic Lsm1-7 and Nuclear Lsm2-8 Complexes. Cell Reports, 2017, 20, 1187-1200.	6.4	34
30	Tau/DDX6 interaction increases microRNA activity. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 762-772.	1.9	32
31	Regulation of pre-mRNA processing by src. Current Biology, 1995, 5, 413-422.	3.9	31
32	Mature mRNAs accumulated in the nucleus are neither the molecules in transit to the cytoplasm nor constitute a stockpile for gene expression. Rna, 2000, 6, 962-975.	3.5	29
33	Laparoscopic adjustable gastric banding in adolescents: Results at two years including psychosocial aspects. Journal of Pediatric Surgery, 2016, 51, 403-408.	1.6	27
34	RNA at the surface of phase-separated condensates impacts their size and number. Biophysical Journal, 2022, 121, 1675-1690.	0.5	24
35	Accumulation of mature mRNA in the nuclear fraction of mammalian cells. FEBS Letters, 1999, 458, 324-328.	2.8	23
36	P-bodies and mitochondria: Which place in RNA interference?. Biochimie, 2012, 94, 1572-1577.	2.6	21

DOMINIQUE WEIL

#	Article	IF	CITATIONS
37	Antisense transcription of a murine FGFR-3 pseudogene duringfetaldevelopment. Gene, 1997, 187, 115-122.	2.2	20
38	Comparative ultrastructure of CRM1-Nucleolar bodies (CNoBs), Intranucleolar bodies (INBs) and hybrid PML/p62 bodies uncovers new facets of nuclear body dynamic and diversity. Nucleus, 2015, 6, 326-338.	2.2	20
39	Secretion of tumor necrosis factor-alpha by fresh human acute nonlymphoblastic leukemic cells: role in the disappearance of normal CFU-GM progenitors. Experimental Hematology, 1990, 18, 1187-92.	0.4	19
40	Pat1 RNAâ€binding proteins: Multitasking shuttling proteins. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1557.	6.4	14
41	Mutations in genes encoding regulators of mRNA decapping and translation initiation: links to intellectual disability. Biochemical Society Transactions, 2020, 48, 1199-1211.	3.4	9
42	Cytoplasmic organelles on the road to mRNA decay. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 725-731.	1.9	8
43	High frequency trans-splicing in a cell line producing spliced and polyadenylated RNA polymerase I transcripts from an rDNA-myc chimeric gene. Nucleic Acids Research, 2005, 33, 2332-2342.	14.5	7
44	Induction of tumor necrosis factor-alpha and -beta and interferon-gamma mRNA by interleukin 2 in murine lymphocytic cell lines. Oncogene Research, 1988, 3, 409-14.	1.2	7
45	Re-viewing the 3D Organization of mRNPs. Molecular Cell, 2018, 72, 603-605.	9.7	6
46	Conservative treatment of a mesenteric lymphangiomyomatosis in an 11-year-old girl with a long follow-up period. Journal of Pediatric Surgery, 2004, 39, 1586-1589.	1.6	3
47	Predominant Expression of Murine Bmx Tyrosine Kinase in the Granulo-Monocytic Lineage. Blood, 1997, 90, 4332-4340.	1.4	3
48	Expression of the Wilms' Tumor Suppressor Gene, WT1, Is Upregulated by Leukemia Inhibitory Factor and Induces Monocytic Differentiation in M1 Leukemic Cells. Blood, 1998, 91, 764-773.	1.4	3