Rahul R Salunkhe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1259139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesoporous nanohybrids of 2–D Cobalt–Chromium layered double hydroxide and polyoxovanadate anions for high performance hybrid asymmetric supercapacitors. Journal of Power Sources, 2022, 524, 231065.	4.0	22
2	Multifunctional nanoarchitectured porous carbon for solar steam generation and supercapacitor applications. Sustainable Energy and Fuels, 2022, 6, 1762-1769.	2.5	19
3	Two-Dimensional Layered Heterostructures of Nanoporous Carbons Using Reduced Graphene Oxide and Metal–Organic Frameworks. Chemistry of Materials, 2022, 34, 4946-4954.	3.2	24
4	Nanoporous Metal Oxides for Supercapacitor Applications. , 2021, , 601-621.		2
5	Block copolymer-assisted synthesis of VO ₂ (B) microflowers for supercapacitor applications. Chemical Communications, 2021, 57, 13748-13751.	2.2	10
6	General template-free strategy for fabricating mesoporous two-dimensional mixed oxide nanosheets <i>via</i> self-deconstruction/reconstruction of monodispersed metal glycerate nanospheres. Journal of Materials Chemistry A, 2018, 6, 5971-5983.	5.2	81
7	Threeâ€Dimensional Macroporous Graphitic Carbon for Supercapacitor Application. ChemistrySelect, 2018, 3, 4522-4526.	0.7	15
8	Significant Effect of Pore Sizes on Energy Storage in Nanoporous Carbon Supercapacitors. Chemistry - A European Journal, 2018, 24, 6127-6132.	1.7	68
9	Zinc Ferrite Anchored Multiwalled Carbon Nanotubes for Highâ€Performance Supercapacitor Applications. European Journal of Inorganic Chemistry, 2018, 2018, 137-142.	1.0	41
10	High surface area nanoporous carbon derived from high quality jute from Bangladesh. Materials Chemistry and Physics, 2018, 216, 491-495.	2.0	24
11	Metal–Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects. ACS Nano, 2017, 11, 5293-5308.	7.3	988
12	High energy density supercapacitors composed of nickel cobalt oxide nanosheets on nanoporous carbon nanoarchitectures. Journal of Materials Chemistry A, 2017, 5, 11834-11839.	5.2	97
13	Hollow carbon nanospheres using an asymmetric triblock copolymer structure directing agent. Chemical Communications, 2017, 53, 236-239.	2.2	37
14	Nanoarchitectured Design of Porous Materials and Nanocomposites from Metalâ€Organic Frameworks. Advanced Materials, 2017, 29, 1604898.	11.1	732
15	Synthesis of MOFâ€525 Derived Nanoporous Carbons with Different Particle Sizes for Supercapacitor Application. Chemistry - an Asian Journal, 2017, 12, 2857-2862.	1.7	52
16	Effect of Various Carbonization Temperatures on ZIF-67 Derived Nanoporous Carbons. Bulletin of the Chemical Society of Japan, 2017, 90, 939-942.	2.0	53
17	A Simple Approach to Generate Hollow Carbon Nanospheres Loaded with Uniformly Dispersed Metal Nanoparticles. European Journal of Inorganic Chemistry, 2017, 2017, 5413-5416.	1.0	3
18	Prussian blue derived iron oxide nanoparticles wrapped in graphene oxide sheets for electrochemical supercapacitors. RSC Advances, 2017, 7, 33994-33999.	1.7	36

#	Article	IF	CITATIONS
19	Controlled growth of polythiophene nanofibers in TiO ₂ nanotube arrays for supercapacitor applications. Journal of Materials Chemistry A, 2017, 5, 172-180.	5.2	76
20	Controlled Synthesis of Highly Crystallized Mesoporous Mn ₂ O ₃ and Mn ₃ O ₄ by Using Anionic Surfactants. Chemistry - an Asian Journal, 2016, 11, 667-673.	1.7	11
21	Phosphonate-Derived Nanoporous Metal Phosphates and Their Superior Energy Storage Application. ACS Applied Materials & Interfaces, 2016, 8, 9790-9797.	4.0	71
22	Flexible-wire shaped all-solid-state supercapacitors based on facile electropolymerization of polythiophene with ultra-high energy density. Journal of Materials Chemistry A, 2016, 4, 7406-7415.	5.2	81
23	Nanoarchitectures for Metal–Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications. Accounts of Chemical Research, 2016, 49, 2796-2806.	7.6	670
24	Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Physical Chemistry Chemical Physics, 2016, 18, 29308-29315.	1.3	213
25	Bimetallic Metal-Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons. Scientific Reports, 2016, 6, 30295.	1.6	314
26	ZIF-8 Derived, Nitrogen-Doped Porous Electrodes of Carbon Polyhedron Particles for High-Performance Electrosorption of Salt Ions. Scientific Reports, 2016, 6, 28847.	1.6	55
27	Ultrahigh performance supercapacitors utilizing core–shell nanoarchitectures from a metal–organic framework-derived nanoporous carbon and a conducting polymer. Chemical Science, 2016, 7, 5704-5713.	3.7	236
28	Surfactant-assisted synthesis of nanoporous nickel sulfide flakes and their hybridization with reduced graphene oxides for supercapacitor applications. RSC Advances, 2016, 6, 21246-21253.	1.7	45
29	Zinc Oxide Encapsulated Carbon Nanotube Thin Films for Energy Storage Applications. Electrochimica Acta, 2016, 192, 377-384.	2.6	57
30	A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chemical Communications, 2016, 52, 4764-4767.	2.2	394
31	Nitrogen-doped hollow carbon spheres with large mesoporous shells engineered from diblock copolymer micelles. Chemical Communications, 2016, 52, 505-508.	2.2	87
32	Controlled Synthesis of Nanoporous Nickel Oxide with Twoâ€Đimensional Shapes through Thermal Decomposition of Metal–Cyanide Hybrid Coordination Polymers. Chemistry - A European Journal, 2015, 21, 3509-3509.	1.7	2
33	Synthesis and Characterization of αâ€ÂNiMoO ₄ Nanorods for Supercapacitor ÂApplication. European Journal of Inorganic Chemistry, 2015, 2015, 3694-3699.	1.0	103
34	Cover Picture: Controlled Synthesis of Nanoporous Nickel Oxide with Twoâ€Dimensional Shapes through Thermal Decomposition of Metal–Cyanide Hybrid Coordination Polymers (Chem. Eur. J.) Tj ETQq0 0 0	rg ₿.7 7/Ov€	erlo o k 10 Tf 50
35	Controlled Synthesis of Nanoporous Nickel Oxide with Twoâ€Dimensional Shapes through Thermal Decomposition of Metal–Cyanide Hybrid Coordination Polymers. Chemistry - A European Journal, 2015, 21, 3605-3612.	1.7	64
36	Thermal Conversion of Core–Shell Metal–Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon. Journal of the American Chemical Society, 2015, 137,	6.6	1,307

1572-1580.

#	Article	IF	CITATIONS
37	Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal–Organic Framework. ACS Nano, 2015, 9, 6288-6296.	7.3	890
38	Rational design of coaxial structured carbon nanotube–manganese oxide (CNT–MnO ₂) for energy storage application. Nanotechnology, 2015, 26, 204004.	1.3	55
39	Fabrication of Asymmetric Supercapacitors Based on Coordination Polymer Derived Nanoporous Materials. Electrochimica Acta, 2015, 183, 94-99.	2.6	24
40	Threeâ€Dimensional Nitrogenâ€Doped Hierarchical Porous Carbon as an Electrode for Highâ€Performance Supercapacitors. Chemistry - A European Journal, 2015, 21, 17293-17298.	1.7	63
41	Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy, 2015, 11, 211-218.	8.2	439
42	Towards Vaporized Molecular Discrimination: A Quartz Crystal Microbalance (QCM) Sensor System Using Cobaltâ€Containing Mesoporous Graphitic Carbon. Chemistry - an Asian Journal, 2014, 9, 3238-3244.	1.7	33
43	Chemical Preparation of Ferroelectric Mesoporous Barium Titanate Thin Films: Drastic Enhancement of Curie Temperature Induced by Mesoporeâ€Derived Strain. Chemistry - A European Journal, 2014, 20, 11283-11286.	1.7	14
44	Singleâ€Crystalâ€like Nanoporous Spinel Oxides: A Strategy for Synthesis of Nanoporous Metal Oxides Utilizing Metal yanide Hybrid Coordination Polymers. Chemistry - A European Journal, 2014, 20, 17375-17384.	1.7	41
45	Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. Journal of Materials Chemistry A, 2014, 2, 19848-19854.	5.2	419
46	Presenting highest supercapacitance for TiO2/MWNTs nanocomposites: Novel method. Chemical Engineering Journal, 2014, 247, 103-110.	6.6	62
47	Direct Growth of Cobalt Hydroxide Rods on Nickel Foam and Its Application for Energy Storage. Chemistry - A European Journal, 2014, 20, 3084-3088.	1.7	127
48	Nanoarchitectured Grapheneâ€Based Supercapacitors for Nextâ€Generation Energyâ€Storage Applications. Chemistry - A European Journal, 2014, 20, 13838-13852.	1.7	274
49	Direct synthesis of a mesoporous TiO ₂ –RuO ₂ composite through evaporation-induced polymeric micelle assembly. Physical Chemistry Chemical Physics, 2014, 16, 10425-10428.	1.3	15
50	Electric Double‣ayer Capacitors Based on Highly Graphitized Nanoporous Carbons Derived from ZIFâ€67. Chemistry - A European Journal, 2014, 20, 7895-7900.	1.7	423
51	Largeâ€Scale Synthesis of Reduced Graphene Oxides with Uniformly Coated Polyaniline for Supercapacitor Applications. ChemSusChem, 2014, 7, 1551-1556.	3.6	170
52	Platinum-Free Counter Electrode Comprised of Metal-Organic-Framework (MOF)-Derived Cobalt Sulfide Nanoparticles for Efficient Dye-Sensitized Solar Cells (DSSCs). Scientific Reports, 2014, 4, 6983.	1.6	182
53	Facile Low-temperature Chemical Synthesis and Characterization of a Manganese Oxide/multi-walled Carbon Nanotube Composite for Supercapacitor Applications. Bulletin of the Korean Chemical Society, 2014, 35, 2974-2978.	1.0	11
54	Synthesis and characterization of mesoporous Ni–Co oxy-hydroxides for pseudocapacitor application. Electrochimica Acta, 2013, 94, 104-112.	2.6	52

#	Article	IF	CITATIONS
55	Aligned nickel-cobalt hydroxide nanorod arrays for electrochemical pseudocapacitor applications. RSC Advances, 2012, 2, 3190.	1.7	130
56	Binary metal hydroxide nanorods and multi-walled carbon nanotube composites for electrochemical energy storage applications. Journal of Materials Chemistry, 2012, 22, 21630.	6.7	81
57	Temperature impact on morphological evolution of ZnO and its consequent effect on physico-chemical properties. Journal of Alloys and Compounds, 2011, 509, 3486-3492.	2.8	44
58	Photosensitive nanostructured TiO2 grown at room temperature by novel "bottom-up―approached CBD method. Journal of Alloys and Compounds, 2011, 509, 6196-6199.	2.8	38
59	Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications. Journal of Alloys and Compounds, 2011, 509, 6677-6682.	2.8	176
60	Hydrophilic polyaniline nanofibrous architecture using electrosynthesis method for supercapacitor application. Current Applied Physics, 2010, 10, 904-909.	1.1	106
61	A novel chemical synthesis of Mn3O4 thin film and its stepwise conversion into birnessite MnO2 during super capacitive studies. Journal of Electroanalytical Chemistry, 2010, 647, 60-65.	1.9	156
62	Room temperature LPG sensor based on n-CdS/p-polyaniline heterojunction. Sensors and Actuators B: Chemical, 2010, 145, 205-210.	4.0	69
63	A novel chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. Applied Surface Science, 2010, 256, 4411-4416.	3.1	187
64	Fabrication of copper oxide multilayer nanosheets for supercapacitor application. Journal of Alloys and Compounds, 2010, 492, 26-30.	2.8	312
65	Effect of electron irradiation on properties of chemically deposited TiO2 nanorods. Journal of Alloys and Compounds, 2010, 499, 63-67.	2.8	15
66	Conversion of interlocked cube-like Mn3O4 into nanoflakes of layered birnessite MnO2 during supercapacitive studies. Journal of Alloys and Compounds, 2010, 496, 370-375.	2.8	79
67	Chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. Journal of Alloys and Compounds, 2010, 497, 166-170.	2.8	155
68	Fuzzy nanofibrous network of polyaniline electrode for supercapacitor application. Synthetic Metals, 2010, 160, 519-522.	2.1	85
69	Conversion of Chemically Prepared Interlocked Cubelike Mn[sub 3]0[sub 4] to Birnessite MnO[sub 2] Using Electrochemical Cycling. Journal of the Electrochemical Society, 2010, 157, A812.	1.3	107
70	Structural, electrical and optical studies of SILAR deposited cadmium oxide thin films: Annealing effect. Materials Research Bulletin, 2009, 44, 364-368.	2.7	62
71	Improved response of CdO nanorods towards liquefied petroleum gas (LPG): Effect of Pd sensitization. Sensors and Actuators B: Chemical, 2009, 136, 39-44.	4.0	73
72	Sprayed CdO thin films for liquefied petroleum gas (LPG) detection. Sensors and Actuators B: Chemical, 2009, 140, 86-91.	4.0	75

#	Article	IF	CITATIONS
73	Synthesis and characterization of cadmium hydroxide nano-nest by chemical route. Applied Surface Science, 2009, 255, 3923-3926.	3.1	31
74	An approach towards the growth of polyaniline nanograins by electrochemical route. Applied Surface Science, 2009, 255, 8213-8216.	3.1	26
75	Liquefied petroleum gas (LPG) sensing performance of electron beam irradiated chemically deposited TiO2 thin films. Sensors and Actuators B: Chemical, 2009, 141, 58-64.	4.0	31
76	A novel chemical synthesis of interlocked cubes of hausmannite Mn3O4 thin films for supercapacitor application. Journal of Alloys and Compounds, 2009, 484, 218-221.	2.8	97
77	Effect of film thickness on liquefied petroleum gas (LPG) sensing properties of SILAR deposited CdO thin films. Sensors and Actuators B: Chemical, 2008, 129, 345-351.	4.0	128
78	Liquefied petroleum gas (LPG) sensing properties of nanocrystalline CdO thin films prepared by chemical route: Effect of molarities of precursor solution. Sensors and Actuators B: Chemical, 2008, 133, 296-301.	4.0	75
79	Room temperature liquefied petroleum gas (LPG) sensor based on p-polyaniline/n-TiO2 heterojunction. Sensors and Actuators B: Chemical, 2008, 134, 988-992.	4.0	139
80	Chemically deposited nanocrystalline NiO thin films for supercapacitor application. Applied Surface Science, 2008, 255, 2603-2607.	3.1	227