Rahul R Salunkhe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1259139/publications.pdf

Version: 2024-02-01

80 papers 12,095 citations

52 h-index 79 g-index

82 all docs 82 docs citations

times ranked

82

13469 citing authors

#	Article	IF	Citations
1	Thermal Conversion of Core–Shell Metal–Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon. Journal of the American Chemical Society, 2015, 137, 1572-1580.	13.7	1,307
2	Metal–Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects. ACS Nano, 2017, 11, 5293-5308.	14.6	988
3	Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal–Organic Framework. ACS Nano, 2015, 9, 6288-6296.	14.6	890
4	Nanoarchitectured Design of Porous Materials and Nanocomposites from Metalâ€Organic Frameworks. Advanced Materials, 2017, 29, 1604898.	21.0	732
5	Nanoarchitectures for Metal–Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications. Accounts of Chemical Research, 2016, 49, 2796-2806.	15.6	670
6	Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy, 2015, 11, 211-218.	16.0	439
7	Electric Doubleâ€Layer Capacitors Based on Highly Graphitized Nanoporous Carbons Derived from ZIFâ€67. Chemistry - A European Journal, 2014, 20, 7895-7900.	3.3	423
8	Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. Journal of Materials Chemistry A, 2014, 2, 19848-19854.	10.3	419
9	A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chemical Communications, 2016, 52, 4764-4767.	4.1	394
10	Bimetallic Metal-Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons. Scientific Reports, 2016, 6, 30295.	3.3	314
11	Fabrication of copper oxide multilayer nanosheets for supercapacitor application. Journal of Alloys and Compounds, 2010, 492, 26-30.	5.5	312
12	Nanoarchitectured Grapheneâ€Based Supercapacitors for Nextâ€Generation Energyâ€Storage Applications. Chemistry - A European Journal, 2014, 20, 13838-13852.	3.3	274
13	Ultrahigh performance supercapacitors utilizing core–shell nanoarchitectures from a metal–organic framework-derived nanoporous carbon and a conducting polymer. Chemical Science, 2016, 7, 5704-5713.	7.4	236
14	Chemically deposited nanocrystalline NiO thin films for supercapacitor application. Applied Surface Science, 2008, 255, 2603-2607.	6.1	227
15	Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Physical Chemistry Chemical Physics, 2016, 18, 29308-29315.	2.8	213
16	A novel chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. Applied Surface Science, 2010, 256, 4411-4416.	6.1	187
17	Platinum-Free Counter Electrode Comprised of Metal-Organic-Framework (MOF)-Derived Cobalt Sulfide Nanoparticles for Efficient Dye-Sensitized Solar Cells (DSSCs). Scientific Reports, 2014, 4, 6983.	3.3	182
18	Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications. Journal of Alloys and Compounds, 2011, 509, 6677-6682.	5.5	176

#	Article	IF	Citations
19	Largeâ€Scale Synthesis of Reduced Graphene Oxides with Uniformly Coated Polyaniline for Supercapacitor Applications. ChemSusChem, 2014, 7, 1551-1556.	6.8	170
20	A novel chemical synthesis of Mn3O4 thin film and its stepwise conversion into birnessite MnO2 during super capacitive studies. Journal of Electroanalytical Chemistry, 2010, 647, 60-65.	3.8	156
21	Chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. Journal of Alloys and Compounds, 2010, 497, 166-170.	5.5	155
22	Room temperature liquefied petroleum gas (LPG) sensor based on p-polyaniline/n-TiO2 heterojunction. Sensors and Actuators B: Chemical, 2008, 134, 988-992.	7.8	139
23	Aligned nickel-cobalt hydroxide nanorod arrays for electrochemical pseudocapacitor applications. RSC Advances, 2012, 2, 3190.	3.6	130
24	Effect of film thickness on liquefied petroleum gas (LPG) sensing properties of SILAR deposited CdO thin films. Sensors and Actuators B: Chemical, 2008, 129, 345-351.	7.8	128
25	Direct Growth of Cobalt Hydroxide Rods on Nickel Foam and Its Application for Energy Storage. Chemistry - A European Journal, 2014, 20, 3084-3088.	3.3	127
26	Conversion of Chemically Prepared Interlocked Cubelike Mn[sub 3]O[sub 4] to Birnessite MnO[sub 2] Using Electrochemical Cycling. Journal of the Electrochemical Society, 2010, 157, A812.	2.9	107
27	Hydrophilic polyaniline nanofibrous architecture using electrosynthesis method for supercapacitor application. Current Applied Physics, 2010, 10, 904-909.	2.4	106
28	Synthesis and Characterization of αâ€ÂNiMoO ₄ Nanorods for Supercapacitor ÂApplication. European Journal of Inorganic Chemistry, 2015, 2015, 3694-3699.	2.0	103
29	A novel chemical synthesis of interlocked cubes of hausmannite Mn3O4 thin films for supercapacitor application. Journal of Alloys and Compounds, 2009, 484, 218-221.	5.5	97
30	High energy density supercapacitors composed of nickel cobalt oxide nanosheets on nanoporous carbon nanoarchitectures. Journal of Materials Chemistry A, 2017, 5, 11834-11839.	10.3	97
31	Nitrogen-doped hollow carbon spheres with large mesoporous shells engineered from diblock copolymer micelles. Chemical Communications, 2016, 52, 505-508.	4.1	87
32	Fuzzy nanofibrous network of polyaniline electrode for supercapacitor application. Synthetic Metals, 2010, 160, 519-522.	3.9	85
33	Binary metal hydroxide nanorods and multi-walled carbon nanotube composites for electrochemical energy storage applications. Journal of Materials Chemistry, 2012, 22, 21630.	6.7	81
34	Flexible-wire shaped all-solid-state supercapacitors based on facile electropolymerization of polythiophene with ultra-high energy density. Journal of Materials Chemistry A, 2016, 4, 7406-7415.	10.3	81
35	General template-free strategy for fabricating mesoporous two-dimensional mixed oxide nanosheets <i>via</i> self-deconstruction/reconstruction of monodispersed metal glycerate nanospheres. Journal of Materials Chemistry A, 2018, 6, 5971-5983.	10.3	81
36	Conversion of interlocked cube-like Mn3O4 into nanoflakes of layered birnessite MnO2 during supercapacitive studies. Journal of Alloys and Compounds, 2010, 496, 370-375.	5.5	79

#	Article	IF	Citations
37	Controlled growth of polythiophene nanofibers in TiO ₂ nanotube arrays for supercapacitor applications. Journal of Materials Chemistry A, 2017, 5, 172-180.	10.3	76
38	Liquefied petroleum gas (LPG) sensing properties of nanocrystalline CdO thin films prepared by chemical route: Effect of molarities of precursor solution. Sensors and Actuators B: Chemical, 2008, 133, 296-301.	7.8	75
39	Sprayed CdO thin films for liquefied petroleum gas (LPG) detection. Sensors and Actuators B: Chemical, 2009, 140, 86-91.	7.8	7 5
40	Improved response of CdO nanorods towards liquefied petroleum gas (LPG): Effect of Pd sensitization. Sensors and Actuators B: Chemical, 2009, 136, 39-44.	7.8	73
41	Phosphonate-Derived Nanoporous Metal Phosphates and Their Superior Energy Storage Application. ACS Applied Materials & Description (2016), 8, 9790-9797.	8.0	71
42	Room temperature LPG sensor based on n-CdS/p-polyaniline heterojunction. Sensors and Actuators B: Chemical, 2010, 145, 205-210.	7.8	69
43	Significant Effect of Pore Sizes on Energy Storage in Nanoporous Carbon Supercapacitors. Chemistry - A European Journal, 2018, 24, 6127-6132.	3.3	68
44	Controlled Synthesis of Nanoporous Nickel Oxide with Twoâ€Dimensional Shapes through Thermal Decomposition of Metal–Cyanide Hybrid Coordination Polymers. Chemistry - A European Journal, 2015, 21, 3605-3612.	3.3	64
45	Threeâ€Dimensional Nitrogenâ€Doped Hierarchical Porous Carbon as an Electrode for Highâ€Performance Supercapacitors. Chemistry - A European Journal, 2015, 21, 17293-17298.	3.3	63
46	Structural, electrical and optical studies of SILAR deposited cadmium oxide thin films: Annealing effect. Materials Research Bulletin, 2009, 44, 364-368.	5.2	62
47	Presenting highest supercapacitance for TiO2/MWNTs nanocomposites: Novel method. Chemical Engineering Journal, 2014, 247, 103-110.	12.7	62
48	Zinc Oxide Encapsulated Carbon Nanotube Thin Films for Energy Storage Applications. Electrochimica Acta, 2016, 192, 377-384.	5.2	57
49	Rational design of coaxial structured carbon nanotube–manganese oxide (CNT–MnO ₂) for energy storage application. Nanotechnology, 2015, 26, 204004.	2.6	55
50	ZIF-8 Derived, Nitrogen-Doped Porous Electrodes of Carbon Polyhedron Particles for High-Performance Electrosorption of Salt Ions. Scientific Reports, 2016, 6, 28847.	3.3	55
51	Effect of Various Carbonization Temperatures on ZIF-67 Derived Nanoporous Carbons. Bulletin of the Chemical Society of Japan, 2017, 90, 939-942.	3.2	53
52	Synthesis and characterization of mesoporous Ni–Co oxy-hydroxides for pseudocapacitor application. Electrochimica Acta, 2013, 94, 104-112.	5. 2	52
53	Synthesis of MOFâ€525 Derived Nanoporous Carbons with Different Particle Sizes for Supercapacitor Application. Chemistry - an Asian Journal, 2017, 12, 2857-2862.	3.3	52
54	Surfactant-assisted synthesis of nanoporous nickel sulfide flakes and their hybridization with reduced graphene oxides for supercapacitor applications. RSC Advances, 2016, 6, 21246-21253.	3 . 6	45

#	Article	IF	CITATIONS
55	Temperature impact on morphological evolution of ZnO and its consequent effect on physico-chemical properties. Journal of Alloys and Compounds, 2011, 509, 3486-3492.	5.5	44
56	Singleâ€Crystalâ€like Nanoporous Spinel Oxides: A Strategy for Synthesis of Nanoporous Metal Oxides Utilizing Metalâ€Cyanide Hybrid Coordination Polymers. Chemistry - A European Journal, 2014, 20, 17375-17384.	3.3	41
57	Zinc Ferrite Anchored Multiwalled Carbon Nanotubes for Highâ€Performance Supercapacitor Applications. European Journal of Inorganic Chemistry, 2018, 2018, 137-142.	2.0	41
58	Photosensitive nanostructured TiO2 grown at room temperature by novel "bottom-up―approached CBD method. Journal of Alloys and Compounds, 2011, 509, 6196-6199.	5.5	38
59	Hollow carbon nanospheres using an asymmetric triblock copolymer structure directing agent. Chemical Communications, 2017, 53, 236-239.	4.1	37
60	Prussian blue derived iron oxide nanoparticles wrapped in graphene oxide sheets for electrochemical supercapacitors. RSC Advances, 2017, 7, 33994-33999.	3.6	36
61	Towards Vaporized Molecular Discrimination: A Quartz Crystal Microbalance (QCM) Sensor System Using Cobaltâ€Containing Mesoporous Graphitic Carbon. Chemistry - an Asian Journal, 2014, 9, 3238-3244.	3.3	33
62	Synthesis and characterization of cadmium hydroxide nano-nest by chemical route. Applied Surface Science, 2009, 255, 3923-3926.	6.1	31
63	Liquefied petroleum gas (LPG) sensing performance of electron beam irradiated chemically deposited TiO2 thin films. Sensors and Actuators B: Chemical, 2009, 141, 58-64.	7.8	31
64	An approach towards the growth of polyaniline nanograins by electrochemical route. Applied Surface Science, 2009, 255, 8213-8216.	6.1	26
65	Fabrication of Asymmetric Supercapacitors Based on Coordination Polymer Derived Nanoporous Materials. Electrochimica Acta, 2015, 183, 94-99.	5.2	24
66	High surface area nanoporous carbon derived from high quality jute from Bangladesh. Materials Chemistry and Physics, 2018, 216, 491-495.	4.0	24
67	Two-Dimensional Layered Heterostructures of Nanoporous Carbons Using Reduced Graphene Oxide and Metal–Organic Frameworks. Chemistry of Materials, 2022, 34, 4946-4954.	6.7	24
68	Mesoporous nanohybrids of 2–D Cobalt–Chromium layered double hydroxide and polyoxovanadate anions for high performance hybrid asymmetric supercapacitors. Journal of Power Sources, 2022, 524, 231065.	7.8	22
69	Multifunctional nanoarchitectured porous carbon for solar steam generation and supercapacitor applications. Sustainable Energy and Fuels, 2022, 6, 1762-1769.	4.9	19
70	Effect of electron irradiation on properties of chemically deposited TiO2 nanorods. Journal of Alloys and Compounds, 2010, 499, 63-67.	5.5	15
71	Direct synthesis of a mesoporous TiO ₂ â€"RuO ₂ composite through evaporation-induced polymeric micelle assembly. Physical Chemistry Chemical Physics, 2014, 16, 10425-10428.	2.8	15
72	Threeâ€Dimensional Macroporous Graphitic Carbon for Supercapacitor Application. ChemistrySelect, 2018, 3, 4522-4526.	1.5	15

#	Article	IF	CITATIONS
73	Chemical Preparation of Ferroelectric Mesoporous Barium Titanate Thin Films: Drastic Enhancement of Curie Temperature Induced by Mesoporeâ€Derived Strain. Chemistry - A European Journal, 2014, 20, 11283-11286.	3.3	14
74	Controlled Synthesis of Highly Crystallized Mesoporous Mn ₂ O ₃ and Mn ₃ O ₄ by Using Anionic Surfactants. Chemistry - an Asian Journal, 2016, 11, 667-673.	3.3	11
75	Facile Low-temperature Chemical Synthesis and Characterization of a Manganese Oxide/multi-walled Carbon Nanotube Composite for Supercapacitor Applications. Bulletin of the Korean Chemical Society, 2014, 35, 2974-2978.	1.9	11
76	Block copolymer-assisted synthesis of VO ₂ (B) microflowers for supercapacitor applications. Chemical Communications, 2021, 57, 13748-13751.	4.1	10
77	A Simple Approach to Generate Hollow Carbon Nanospheres Loaded with Uniformly Dispersed Metal Nanoparticles. European Journal of Inorganic Chemistry, 2017, 2017, 5413-5416.	2.0	3
78	Controlled Synthesis of Nanoporous Nickel Oxide with Twoâ€Dimensional Shapes through Thermal Decomposition of Metal–Cyanide Hybrid Coordination Polymers. Chemistry - A European Journal, 2015, 21, 3509-3509.	3.3	2
79	Nanoporous Metal Oxides for Supercapacitor Applications. , 2021, , 601-621.		2

Cover Picture: Controlled Synthesis of Nanoporous Nickel Oxide with Twoâ€Dimensional Shapes through Thermal Decomposition of Metal–Cyanide Hybrid Coordination Polymers (Chem. Eur. J.) Tj ETQq0 0 0 rg8⅓/Overlook 10 Tf 50