Avner Thaler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1259108/publications.pdf

Version: 2024-02-01

	331259	315357
1,590	21	38
citations	h-index	g-index
51	51	1951
docs citations	times ranked	citing authors
	citations 51	1,590 21 citations h-index 51 51

#	Article	IF	CITATIONS
1	Arm swing as a potential new prodromal marker of Parkinson's disease. Movement Disorders, 2016, 31, 1527-1534.	2.2	136
2	Parkinson disease phenotype in Ashkenazi jews with and without <i>LRRK2</i> G2019S mutations. Movement Disorders, 2013, 28, 1966-1971.	2.2	131
3	Progression in the <i>LRRK2</i> -Associated Parkinson Disease Population. JAMA Neurology, 2018, 75, 312.	4.5	109
4	Parkinson's disease phenotype is influenced by the severity of the mutations in the GBA gene. Parkinsonism and Related Disorders, 2018, 55, 45-49.	1.1	90
5	Fall risk and gait in Parkinson's disease: The role of the LRRK2 G2019S mutation. Movement Disorders, 2013, 28, 1683-1690.	2.2	82
6	A "dose―effect of mutations in the GBA gene on Parkinson's disease phenotype. Parkinsonism and Related Disorders, 2017, 36, 47-51.	1.1	78
7	Lower cognitive performance in healthy G2019S <i>LRRK2</i> mutation carriers. Neurology, 2012, 79, 1027-1032.	1.5	75
8	Reorganization of corticostriatal circuits in healthy G2019S <i>LRRK2</i> carriers. Neurology, 2015, 84, 399-406.	1.5	66
9	Effects of Aging on Arm Swing during Gait: The Role of Gait Speed and Dual Tasking. PLoS ONE, 2015, 10, e0136043.	1.1	63
10	The LRRK2 G2019S mutation as the cause of Parkinson's disease in Ashkenazi Jews. Journal of Neural Transmission, 2009, 116, 1473-1482.	1.4	54
11	Nonmotor symptoms in healthy Ashkenazi Jewish carriers of the G2019S mutation in the <i>LRRK2</i> gene. Movement Disorders, 2015, 30, 981-986.	2.2	52
12	Application of the Movement Disorder Society prodromal criteria in healthy <i>G2019S</i> â€ <i>LRRK2</i> carriers. Movement Disorders, 2018, 33, 966-973.	2.2	44
13	Neural correlates of executive functions in healthy G2019S LRRK2 mutation carriers. Cortex, 2013, 49, 2501-2511.	1.1	42
14	Detecting Sensitive Mobility Features for Parkinson's Disease Stages Via Machine Learning. Movement Disorders, 2021, 36, 2144-2155.	2.2	40
15	Association of Dual <i>LRRK2 </i> C2019S and <i>GBA</i> Variations With Parkinson Disease Progression. JAMA Network Open, 2021, 4, e215845.	2.8	38
16	Tossing and Turning in Bed: Nocturnal Movements in Parkinson's Disease. Movement Disorders, 2020, 35, 959-968.	2.2	34
17	Cerebral pathological and compensatory mechanisms in the premotor phase of leucine-rich repeat kinase 2 parkinsonism. Brain, 2012, 135, 3687-3698.	3.7	33
18	A Possible Modifying Effect of the G2019S Mutation in the LRRK2 Gene on GBA Parkinson's Disease. Movement Disorders, 2020, 35, 1249-1253.	2.2	27

#	Article	IF	Citations
19	DaT-SPECT assessment depicts dopamine depletion among asymptomatic G2019S LRRK2 mutation carriers. PLoS ONE, 2017, 12, e0175424.	1.1	27
20	Revisiting the non-Gaucher-GBA-E326K carrier state: Is it sufficient to increase Parkinson's disease risk?. Molecular Genetics and Metabolism, 2019, 128, 470-475.	0.5	25
21	Cerebral Imaging Markers of GBA and LRRK2 Related Parkinson's Disease and Their First-Degree Unaffected Relatives. Brain Topography, 2018, 31, 1029-1036.	0.8	23
22	A cognitive fMRI study in non-manifesting LRRK2 and GBA carriers. Brain Structure and Function, 2017, 222, 1207-1218.	1.2	22
23	Single center experience with medical cannabis in Gilles de la Tourette syndrome. Parkinsonism and Related Disorders, 2019, 61, 211-213.	1.1	22
24	A Personalized Approach to Parkinson's Disease Patients Based on Founder Mutation Analysis. Frontiers in Neurology, 2016, 7, 71.	1.1	21
25	A voxelâ€based morphometry and diffusion tensor imaging analysis of asymptomatic Parkinson's diseaseâ€related G2019S LRRK2 mutation carriers. Movement Disorders, 2014, 29, 823-827.	2.2	20
26	Altered reward-related neural responses in non-manifesting carriers of the Parkinson disease related LRRK2 mutation. Brain Imaging and Behavior, 2019, 13, 1009-1020.	1.1	20
27	Metabolic syndrome does not influence the phenotype of LRRK2 and GBA related Parkinson's disease. Scientific Reports, 2020, 10, 9329.	1.6	19
28	Glucocerebrosidase Activity is not Associated with Parkinson's Disease Risk or Severity. Movement Disorders, 2022, 37, 190-195.	2.2	19
29	Appreciation of humor is decreased among patients with Parkinson's disease. Parkinsonism and Related Disorders, 2012, 18, 144-148.	1.1	18
30	Intact working memory in nonâ€manifesting <i><scp>LRRK</scp>2</i> carriers – an <scp>fMRI</scp> study. European Journal of Neuroscience, 2016, 43, 106-112.	1.2	16
31	Network abnormalities among nonâ€manifesting Parkinson disease related LRRK2 mutation carriers. Human Brain Mapping, 2019, 40, 2546-2555.	1.9	16
32	Mutations in GBA and LRRK2 Are Not Associated with Increased Inflammatory Markers. Journal of Parkinson's Disease, 2021, 11, 1285-1296.	1.5	16
33	Survival rates among Parkinson's disease patients who carry mutations in the LRRK2 and GBA genes. Movement Disorders, 2018, 33, 1656-1660.	2.2	14
34	Hierarchical Data-Driven Analysis of Clinical Symptoms Among Patients With Parkinson's Disease. Frontiers in Neurology, 2019, 10, 531.	1.1	13
35	The Effect of GBA Mutations and APOE Polymorphisms on Dementia with Lewy Bodies in Ashkenazi Jews. Journal of Alzheimer's Disease, 2021, 80, 1221-1229.	1.2	12
36	Robust inter-subject audiovisual decoding in functional magnetic resonance imaging using high-dimensional regression. Neurolmage, 2017, 163, 244-263.	2.1	11

#	Article	IF	CITATIONS
37	Validation of the Hebrew version of the Movement Disorder Societyâ€"Unified Parkinson's Disease Rating Scale. Parkinsonism and Related Disorders, 2017, 45, 7-12.	1.1	9
38	Quantitative digital clock drawing test as a sensitive tool to detect subtle cognitive impairments in early stage Parkinson's disease. Parkinsonism and Related Disorders, 2021, 90, 84-89.	1.1	8
39	Whole brain and deep gray matter structure segmentation: Quantitative comparison between MPRAGE and MP2RAGE sequences. PLoS ONE, 2021, 16, e0254597.	1.1	7
40	Reduced mind wandering in patients with Parkinson's disease. Parkinsonism and Related Disorders, 2017, 44, 38-43.	1.1	5
41	Aberrant dopamine transporter and functional connectivity patterns in LRRK2 and GBA mutation carriers. Npj Parkinson's Disease, 2022, 8, 20.	2.5	5
42	Structural and Functional MRI in Familial Parkinson's Disease. International Review of Neurobiology, 2018, 142, 261-287.	0.9	4
43	PARK16 locus: Differential effects of the non-coding rs823114 on Parkinson's disease risk, RNA expression, and DNA methylation. Journal of Genetics and Genomics, 2021, 48, 341-345.	1.7	4
44	Biochemical markers for severity and risk in GBA and LRRK2 Parkinson's disease. Journal of Neurology, 2021, 268, 1517-1525.	1.8	4
45	Glucocerebrosidase Activity Is Not Associated with Parkinson's Disease Risk or Severity. Movement Disorders, 2022, 37, 651-652.	2.2	4
46	Low cerebrospinal fluid volume and the risk for post-lumbar puncture headaches. Journal of the Neurological Sciences, 2020, 417, 117059.	0.3	3
47	Distinguishing Dementia With Lewy Bodies From Alzheimer Disease. Alzheimer Disease and Associated Disorders, 2019, 33, 279-281.	0.6	2
48	The GBA-370Rec Parkinson's disease risk haplotype harbors a potentially pathogenic variant in the mitochondrial gene SLC25A44. Molecular Genetics and Metabolism, 2021, 133, 109-112.	0.5	2
49	C9orf72-G4C2 Intermediate Repeats and Parkinson's Disease; A Data-Driven Hypothesis. Genes, 2021, 12, 1210.	1.0	2
50	Long-Term Persistence and Monotherapy with Device-Aided Therapies: A Retrospective Analysis of an Israeli Cohort of Patients with Advanced Parkinson's Disease. Advances in Therapy, 2022, , 1.	1.3	2
51	Repeated Intravenous Amantadine Infusions in Advanced Parkinsonism: Experience of a Large Movement Disorder Center. Israel Medical Association Journal, 2019, 21, 812-816.	0.1	1