
Matija Milosevic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1258808/publications.pdf Version: 2024-02-01

ΜΑΤΙΙΑ ΜΙΙ ΟSEVIC

#	Article	IF	CITATIONS
1	Trunk control impairment is responsible for postural instability during quiet sitting in individuals with cervical spinal cord injury. Clinical Biomechanics, 2015, 30, 507-512.	1.2	53
2	Muscle synergies reveal impaired trunk muscle coordination strategies in individuals with thoracic spinal cord injury. Journal of Electromyography and Kinesiology, 2017, 36, 40-48.	1.7	44
3	On the reflex mechanisms of cervical transcutaneous spinal cord stimulation in human subjects. Journal of Neurophysiology, 2019, 121, 1672-1679.	1.8	39
4	Effects of spinal cord stimulation on postural control in Parkinson's disease patients with freezing of gait. ELife, 2018, 7, .	6.0	38
5	Why brain-controlled neuroprosthetics matter: mechanisms underlying electrical stimulation of muscles and nerves in rehabilitation. BioMedical Engineering OnLine, 2020, 19, 81.	2.7	31
6	Arm movement improves performance in clinical balance and mobility tests. Gait and Posture, 2011, 33, 507-509.	1.4	28
7	Visualization of Trunk Muscle Synergies During Sitting Perturbations Using Self-Organizing Maps (SOM). IEEE Transactions on Biomedical Engineering, 2012, 59, 2516-2523.	4.2	24
8	Postural instability via a loss of intermittent control in elderly and patients with Parkinson's disease: A model-based and data-driven approach. Chaos, 2020, 30, 113140.	2.5	24
9	Selectivity and excitability of upper-limb muscle activation during cervical transcutaneous spinal cord stimulation in humans. Journal of Applied Physiology, 2021, 131, 746-759.	2.5	23
10	Postural regulatory strategies during quiet sitting are affected in individuals with thoracic spinal cord injury. Gait and Posture, 2017, 58, 446-452.	1.4	21
11	Short-term inhibition of spinal reflexes in multiple lower limb muscles after neuromuscular electrical stimulation of ankle plantar flexors. Experimental Brain Research, 2019, 237, 467-476.	1.5	20
12	Relationship Between Posturography, Clinical Balance and Executive Function in Parkinson´s Disease. Journal of Motor Behavior, 2019, 51, 212-221.	0.9	20
13	Lateral hypothalamic activity indicates hunger and satiety states in humans. Annals of Clinical and Translational Neurology, 2017, 4, 897-901.	3.7	19
14	Effects of neuromuscular electrical stimulation and voluntary commands on the spinal reflex excitability of remote limb muscles. Experimental Brain Research, 2019, 237, 3195-3205.	1.5	18
15	Evidence for existence of trunk-limb neural interaction in the corticospinal pathway. Neuroscience Letters, 2018, 668, 31-36.	2.1	15
16	Contractile properties of superficial skeletal muscle affect postural control in healthy young adults: A test of the rambling and trembling hypothesis. PLoS ONE, 2019, 14, e0223850.	2.5	14
17	Anticipation of direction and time of perturbation modulates the onset latency of trunk muscle responses during sitting perturbations. Journal of Electromyography and Kinesiology, 2016, 26, 94-101.	1.7	13
18	Cortical Re-organization After Traumatic Brain Injury Elicited Using Functional Electrical Stimulation Therapy: A Case Report. Frontiers in Neuroscience, 2021, 15, 693861.	2.8	13

MATIJA MILOSEVIC

#	Article	IF	CITATIONS
19	Trunk muscle co-activation using functional electrical stimulation modifies center of pressure fluctuations during quiet sitting by increasing trunk stiffness. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 99.	4.6	12
20	Muscle-specific movement-phase-dependent modulation of corticospinal excitability during upper-limb motor execution and motor imagery combined with virtual action observation. Neuroscience Letters, 2021, 755, 135907.	2.1	11
21	Preferential activation of proprioceptive and cutaneous sensory fibers compared to motor fibers during cervical transcutaneous spinal cord stimulation: A computational study. Journal of Neural Engineering, 2022, , .	3.5	11
22	Video game-based neuromuscular electrical stimulation system for calf muscle training: A case study. Medical Engineering and Physics, 2011, 33, 249-255.	1.7	10
23	Interlimb neural interactions in corticospinal and spinal reflex circuits during preparation and execution of isometric elbow flexion. Journal of Neurophysiology, 2020, 124, 652-667.	1.8	9
24	Low-Intensity and Short-Duration Continuous Cervical Transcutaneous Spinal Cord Stimulation Intervention Does Not Prime the Corticospinal and Spinal Reflex Pathways in Able-Bodied Subjects. Journal of Clinical Medicine, 2021, 10, 3633.	2.4	9
25	Evaluation of Protective Gloves and Working Techniques for Reducing Handâ€arm Vibration Exposure in the Workplace. Journal of Occupational Health, 2012, 54, 250-253.	2.1	8
26	Wheelchair Neuroprosthesis for Improving Dynamic Trunk Stability. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 2472-2479.	4.9	8
27	Force Control of Ankle Dorsiflexors in Young Adults: Effects of Bilateral Control and Leg Dominance. Journal of Motor Behavior, 2020, 52, 226-235.	0.9	8
28	Short-term effects of electrical nerve stimulation on spinal reciprocal inhibition depend on gait phase during passive stepping. Journal of Electromyography and Kinesiology, 2018, 38, 151-154.	1.7	7
29	Evidence That Brain-Controlled Functional Electrical Stimulation Could Elicit Targeted Corticospinal Facilitation of Hand Muscles in Healthy Young Adults. Neuromodulation, 2023, 26, 1612-1621.	0.8	7
30	Contribution of Each Motor Point of Quadriceps Femoris to Knee Extension Torque During Neuromuscular Electrical Stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 389-396.	4.9	6
31	Measurement of Vibrations and Evaluation of Protective Gloves for Work with Hand-held Power Tools in Industrial Settings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 2281-4.	0.5	5
32	Arm movement effect on balance. , 2012, 2012, 4549-52.		5
33	Active video game head movement inputs. Personal and Ubiquitous Computing, 2014, 18, 253-257.	2.8	5
34	Cortical and Subcortical Neural Interactions Between Trunk and Upper-limb Muscles in Humans. Neuroscience, 2020, 451, 126-136.	2.3	5
35	Audio-visual biofeedback system for postural control. International Journal on Disability and Human Development, 2011, 10, .	0.2	4
36	Spinal cord stimulation for gait impairment in spinocerebellar ataxia 7. Journal of Neurology, 2014, 261, 570-574.	3.6	4

MATIJA MILOSEVIC

#	Article	IF	CITATIONS
37	Changes in corticospinal excitability during bilateral and unilateral lower-limb force control tasks. Experimental Brain Research, 2020, 238, 1977-1987.	1.5	4
38	Task- and Intensity-Dependent Modulation of Arm-Trunk Neural Interactions in the Corticospinal Pathway in Humans. ENeuro, 2021, 8, ENEURO.0111-21.2021.	1.9	4
39	Long-Lasting Event-Related Beta Synchronizations of Electroencephalographic Activity in Response to Support-Surface Perturbations During Upright Stance: A Pilot Study Associating Beta Rebound and Active Monitoring in the Intermittent Postural Control. Frontiers in Systems Neuroscience, 2021, 15, 660434.	2.5	3
40	Corticospinal excitability and somatosensory information processing of the lower limb muscle during upper limb voluntary or electrically induced muscle contractions. European Journal of Neuroscience, 2022, 55, 1810-1824.	2.6	2
41	Short-term facilitation effects elicited by cortical priming through theta burst stimulation and functional electrical stimulation of upper-limb muscles. Experimental Brain Research, 2022, , 1.	1.5	2
42	Head Movement Effects in a Cost-Effective Virtual Reality Training Environment for Balance Rehabilitation. , 2007, , .		1
43	Development and Validation of a Closed-Loop Functional Electrical Stimulation-Based Controller for Gait Rehabilitation Using a Finite State Machine Model. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 1642-1651.	4.9	1
44	Optimizing sensory fiber activation during cervical transcutaneous spinal stimulation using different electrode configurations: A computational analysis. Artificial Organs, 0, , .	1.9	0
45	The International Functional Electrical Stimulation Society (<scp>IFESS</scp>): Current and future developments. Artificial Organs, 2022, 46, 1968-1969.	1.9	0