Antonio J LÃ³pez MartÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1258739/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The flipped voltage follower: a useful cell for low-voltage low-power circuit design. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2005, 52, 1276-1291.	0.1	532
2	Low-Voltage Super class AB CMOS OTA cells with very high slew rate and power efficiency. IEEE Journal of Solid-State Circuits, 2005, 40, 1068-1077.	5.4	239
3	Very Low-Voltage Analog Signal Processing Based on Quasi-Floating Gate Transistors. IEEE Journal of Solid-State Circuits, 2004, 39, 434-442.	5.4	201
4	A free but efficient low-voltage class-AB two-stage operational amplifier. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2006, 53, 568-571.	2.2	126
5	Super Class-AB OTAs With Adaptive Biasing and Dynamic Output Current Scaling. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2007, 54, 449-457.	0.1	90
6	A new family of very low-voltage analog circuits based on quasi-floating-gate transistors. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2003, 50, 214-220.	2.2	77
7	Current-Mode Multiplier/Divider Circuits Based on the MOS Translinear Principle. , 2001, 28, 265-278.		69
8	Super Class-AB Recycling Folded Cascode OTA. IEEE Journal of Solid-State Circuits, 2018, 53, 2614-2623.	5.4	65
9	Highly Linear Tunable CMOS \$Gm{hbox{-}}C\$Low-Pass Filter. IEEE Transactions on Circuits and Systems I: Regular Papers, 2009, 56, 2145-2158.	5.4	60
10	Using Floating Gate and Quasi-Floating Gate Techniques for Rail-to-Rail Tunable CMOS Transconductor Design. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, 58, 1604-1614.	5.4	57
11	MITE circuits: the continuous-time counterpart to switched-capacitor circuits. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2001, 48, 45-55.	2.2	50
12	Simple class-AB voltage follower with slew rate and bandwidth enhancement and no extra static power or supply requirements. Electronics Letters, 2006, 42, 784.	1.0	50
13	CMOS Transconductors With Continuous Tuning Using FGMOS Balanced Output Current Scaling. IEEE Journal of Solid-State Circuits, 2008, 43, 1313-1323.	5.4	49
14	A CMOS transconductor with multidecade tuning using balanced current scaling in moderate inversion. IEEE Journal of Solid-State Circuits, 2005, 40, 1078-1083.	5.4	47
15	Systematic Design of Companding Systems by Component Substitution. , 2001, 28, 91-106.		45
16	Low-voltage micropower super class AB CMOS OTA. Electronics Letters, 2004, 40, 216.	1.0	43
17	Biasing CMOS amplifiers using MOS transistors in subthreshold region. IEICE Electronics Express, 2004, 1, 339-345.	0.8	43
18	Low-voltage high-performance voltage-mode and current-mode WTA circuits based on flipped voltage followers. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2005, 52, 420-423.	2.2	41

#	Article	IF	CITATIONS
19	Tunable Class AB CMOS Gm-C Filter Based on Quasi-Floating Gate Techniques. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60, 1300-1309.	5.4	40
20	1.5-V MOS translinear loops with improved dynamic range and their applications to current-mode signal processing. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2003, 50, 918-927.	2.2	38
21	A compact tunable CMOS transconductor with high linearity. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2005, 52, 82-84.	2.2	36
22	Enhanced Single-Stage Folded Cascode OTA Suitable for Large Capacitive Loads. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 441-445.	3.0	33
23	Performance Tradeoffs of Three Novel GMR Contactless Angle Detectors. IEEE Sensors Journal, 2009, 9, 191-198.	4.7	32
24	Powerâ€efficient analog design based on the class AB super source follower. International Journal of Circuit Theory and Applications, 2012, 40, 1143-1163.	2.0	32
25	Low-voltage power-efficient adaptive biasing for CMOS amplifiers and buffers. Electronics Letters, 2004, 40, 217.	1.0	31
26	New low-Voltage fully programmable CMOS triangular/trapezoidal function Generator circuit. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2005, 52, 2033-2042.	0.1	31
27	A Highly Efficient Composite Class-AB–AB Miller Op-Amp With High Gain and Stable From 15 pF Up To Very Large Capacitive Loads. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26, 2061-2072.	3.1	31
28	Tunable Linear MOS Resistors Using Quasi-Floating-Gate Techniques. IEEE Transactions on Circuits and Systems II: Express Briefs, 2009, 56, 41-45.	3.0	30
29	Highly linear programmable balanced current scaling technique in moderate inversion. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2006, 53, 283-285.	2.2	28
30	A 1.2-V 140-nW 10-bit Sigma–Delta Modulator for Electroencephalogram Applications. IEEE Transactions on Biomedical Circuits and Systems, 2008, 2, 223-230.	4.0	28
31	Power-efficient class AB CMOS buffer. Electronics Letters, 2009, 45, 89.	1.0	28
32	Compact class AB CMOS current mirror. Electronics Letters, 2008, 44, 1335.	1.0	27
33	Programmable capacitance scaling scheme based on operational transconductance amplifiers. Electronics Letters, 2009, 45, 159.	1.0	27
34	Attracting Prospective Engineering Students in the Emerging European Space for Higher Education. IEEE Transactions on Education, 2010, 53, 46-52.	2.4	27
35	Three novel improved CMOS Câ€multipliers. International Journal of Circuit Theory and Applications, 2012, 40, 607-616.	2.0	27
36	Self-Biased Dual-Path Push-Pull Output Buffer Amplifier for LCD Column Drivers. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61, 663-670.	5.4	27

ANTONIO J LÃ³ pez MartÃn

#	Article	IF	CITATIONS
37	1.5-V current-mode CMOS true RMS-DC converter based on class-AB transconductors. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2005, 52, 376-379.	2.2	26
38	Two-Stage Differential Charge and Transresistance Amplifiers. IEEE Transactions on Instrumentation and Measurement, 2008, 57, 309-320.	4.7	25
39	1.5â€V CMOS companding filter. Electronics Letters, 2002, 38, 1346.	1.0	24
40	1.5-V square-root domain second-order filter with on-chip tuning. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2005, 52, 1996-2006.	0.1	24
41	Power Efficient Class AB Op-Amps With High and Symmetrical Slew Rate. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2014, 22, 943-947.	3.1	24
42	Super class AB OTA without openâ€loop gain degradation based on dynamic cascode biasing. International Journal of Circuit Theory and Applications, 2017, 45, 2111-2118.	2.0	24
43	Rail-to-rail super class AB CMOS operational amplifiers. Electronics Letters, 2005, 41, 1.	1.0	23
44	Linearisation of MOS resistors using capacitive gate voltage averaging. Electronics Letters, 2005, 41, 511.	1.0	22
45	MOSFET-C filter with on-chip tuning and wide programming range. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2001, 48, 944-951.	2.2	21
46	A High-Swing, High-Speed CMOS WTA Using Differential Flipped Voltage Followers. IEEE Transactions on Circuits and Systems II: Express Briefs, 2007, 54, 668-672.	3.0	21
47	Micropower Class-AB VGA With Gain-Independent Bandwidth. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, 60, 397-401.	3.0	21
48	A 1.5 V Current-Mode CMOS RMS-to-DC Converter. Analog Integrated Circuits and Signal Processing, 2003, 36, 137-143.	1.4	20
49	A Fully Parallel CMOS Analog Median Filter. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2004, 51, 116-123.	2.2	20
50	Low-voltage high performance compact all cascode CMOS current mirror. Electronics Letters, 2005, 41, 1359.	1.0	20
51	Class AB amplifier with enhanced slew rate and GBW. International Journal of Circuit Theory and Applications, 2019, 47, 1199-1210.	2.0	20
52	Title is missing!. Analog Integrated Circuits and Signal Processing, 2003, 36, 39-46.	1.4	19
53	A proposal for high-performance CCII-based analogue CMOS design. International Journal of Circuit Theory and Applications, 2005, 33, 379-391.	2.0	19
54	Analysis of a negative impedance converter as a temperature compensator for bridge sensors. IEEE Transactions on Instrumentation and Measurement, 2003, 52, 1068-1072.	4.7	18

#	Article	IF	CITATIONS
55	Compact implementation of high-performance CMOS current mirror. Electronics Letters, 2005, 41, 570.	1.0	18
56	A Tunable Pseudo-Differential OTA With \$-78~{hbox {dB}}\$ THD Consuming 1.25 mW. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55, 527-531.	3.0	18
57	Lowâ€power CMOS variable gain amplifier based on a novel tunable transconductor. IET Circuits, Devices and Systems, 2015, 9, 105-110.	1.4	18
58	±0.5 V 15 <inline-formula> <tex-math notation="LaTeX">\$mu\$ </tex-math> </inline-formula> W Recycling Folded Cascode Amplifier With 34767 MHz·pF/mA FOM. IEEE Solid-State Circuits Letters, 2018, 1, 170-173.	2.0	18
59	1.2-V 5-/spl mu/W class-AB CMOS log-domain integrator with multidecade tuning. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2005, 52, 665-668.	2.2	17
60	Gain programmable current mirrors based on current steering. Electronics Letters, 2006, 42, 559.	1.0	17
61	A simple approach for the implementation of CMOS amplifiers with constant bandwidth independent of gain. , 2008, , .		17
62	Micropower high currentâ€drive class AB CMOS currentâ€feedback operational amplifier. International Journal of Circuit Theory and Applications, 2011, 39, 893-903.	2.0	17
63	CMOS analogue current-mode multiplier/divider circuit operating in triode-saturation with bulk-driven techniques. The Integration VLSI Journal, 2017, 59, 243-246.	2.1	17
64	Powerâ€efficient classâ€AB telescopic cascode opamp. Electronics Letters, 2018, 54, 620-622.	1.0	17
65	Low-voltage CMOS analogue four quadrant multiplier based on flipped voltage followers. Electronics Letters, 2003, 39, 1771.	1.0	16
66	Very Low Voltage MOS Translinear Loops Based on Flipped Voltage Followers. Analog Integrated Circuits and Signal Processing, 2004, 40, 71-74.	1.4	16
67	A Compact Four-Quadrant Floating-Gate MOS Multiplier. Analog Integrated Circuits and Signal Processing, 2004, 41, 159-166.	1.4	16
68	Sensing in Coin Discriminators. , 2007, , .		16
69	Free class AB–AB Miller opamp with high current enhancement. Electronics Letters, 2015, 51, 215-217.	1.0	16
70	Powerâ€efficient class AB fully differential amplifier. Electronics Letters, 2017, 53, 1298-1300.	1.0	16
71	1.5â€V four-quadrant CMOS current multiplierâ^•divider. Electronics Letters, 2003, 39, 434.	1.0	15
72	CMOS linear programmable transconductor suitable for adjustable Gm-C filters. Electronics Letters, 2008, 44, 505.	1.0	15

#	Article	IF	CITATIONS
73	Compact low-voltage CMOS current-mode multiplier/divider. , 2010, , .		15
74	CMOS triode transconductor based on quasi-floating-gate transistors. Electronics Letters, 2010, 46, 1190.	1.0	15
75	Low-Power Class-AB CMOS Voltage Feedback Current Operational Amplifier With Tunable Gain and Bandwidth. IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, 61, 574-578.	3.0	15
76	Design of MOS-translinear Multiplier/Dividers in Analog VLSI. VLSI Design, 2000, 11, 321-329.	0.5	14
77	A Very Linear Low-Pass Filter with Automatic Frequency Tuning. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2013, 21, 182-187.	3.1	14
78	Highly linear micropower class AB current mirrors using Quasi-Floating Gate transistors. Microelectronics Journal, 2014, 45, 1261-1267.	2.0	14
79	Pseudo-Three-Stage Miller Op-Amp With Enhanced Small-Signal and Large-Signal Performance. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 2246-2259.	3.1	14
80	Analogue switch for very low-voltage applications. Electronics Letters, 2003, 39, 701.	1.0	13
81	New low-voltage class AB/AB CMOS op amp with rail-to-rail input/output swing. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2006, 53, 289-293.	2.2	13
82	A \$pm\$0.75-V Compact CMOS Class-AB Current-Mode Exponential Variable Gain Amplifier. IEEE Transactions on Circuits and Systems II: Express Briefs, 2007, 54, 1042-1046.	3.0	13
83	Low-voltage first-order fully differential CMOS all-pass filter with programmable pole-zero. Electronics Letters, 2009, 45, 385.	1.0	13
84	Fully Differential Current-Mode CMOS Triode Translinear Multiplier. IEEE Transactions on Circuits and Systems II: Express Briefs, 2011, 58, 21-25.	3.0	13
85	Low-voltage highly-linear class AB current mirror with dynamic cascode biasing. Electronics Letters, 2012, 48, 1336.	1.0	13
86	High current efficiency class-AB OTA with high open loop gain and enhanced bandwidth. IEICE Electronics Express, 2017, 14, 20170719-20170719.	0.8	13
87	360 nW Gate-Driven Ultra-Low Voltage CMOS Linear Transconductor With 1 MHz Bandwidth and Wide Input Range. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 2332-2336.	3.0	13
88	New Compact CMOS Continuous-Time Low-Voltage Analog Rank-Order Filter Architecture. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2004, 51, 257-261.	2.2	12
89	Novel Low-Power High-dB Range CMOS Pseudo-Exponential Cells. ETRI Journal, 2006, 28, 732-738.	2.0	12
90	Class AB CMOS analogue squarer circuit. Electronics Letters, 2007, 43, 1059.	1.0	12

#	Article	IF	CITATIONS
91	Current-mode CMOS multiplier/divider circuit operating in linear/saturation regions. Analog Integrated Circuits and Signal Processing, 2011, 66, 299-302.	1.4	12
92	Sensor signal linearization techniques: A comparative analysis. , 2013, , .		12
93	Super class AB RFC OTA with adaptive local commonâ€mode feedback. Electronics Letters, 2018, 54, 1272-1274.	1.0	12
94	Teaching Random Signals and Noise: An Experimental Approach. IEEE Transactions on Education, 2004, 47, 174-179.	2.4	11
95	High-performance micropower class AB current mirror. Electronics Letters, 2012, 48, 823.	1.0	11
96	Design of micropower class AB transconductors: A systematic approach. Microelectronics Journal, 2013, 44, 920-929.	2.0	11
97	An Amplified Offset Compensation Scheme and Its Application in a Track and Hold Circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 416-420.	3.0	11
98	1.5â€V tunable Square-Root Domain filter. Electronics Letters, 2004, 40, 213.	1.0	10
99	Low Voltage Differential Input Stage With Improved CMRR and True Rail-to-Rail Common Mode Input Range. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55, 1229-1233.	3.0	10
100	A tunable highly linear CMOS transconductor with 80 dB of SFDR. The Integration VLSI Journal, 2009, 42, 277-285.	2.1	10
101	Three novel improved CMOS capacitance scaling schemes. , 2010, , .		10
102	Super class AB RFC OTA using nonâ€linear current mirrors. Electronics Letters, 2018, 54, 1317-1318.	1.0	10
103	Monitoring of Electric Buses Within an Urban Smart City Environment. IEEE Sensors Journal, 2022, 22, 11364-11372.	4.7	10
104	Novel Architectures of Class AB CMOS Mirrors with Programmable Gain. Analog Integrated Circuits and Signal Processing, 2005, 42, 197-202.	1.4	9
105	Multiple operating points in a square-root domain first-order filter. International Journal of Circuit Theory and Applications, 2007, 35, 71-91.	2.0	9
106	Rail-to-rail fully differential sample and hold based on differential difference amplifier. Electronics Letters, 2008, 44, 656.	1.0	9
107	±0.18â€V supply voltage gateâ€driven PGA with 0.7â€Hz to 2â€kHz constant bandwidth and 0.15â€Î¼W powe dissipation. International Journal of Circuit Theory and Applications, 2018, 46, 272-279.	er 2.0	9
108	Super-Gain-Boosted AB-AB Fully Differential Miller Op-Amp With 156dB Open-Loop Gain and 174MV/V MHZ pF/l፞1⁄4W Figure of Merit in 130nm CMOS Technology. IEEE Access, 2021, 9, 57603-57617.	4.2	9

#	Article	IF	CITATIONS
109	Gain-Boosted Super Class AB OTAs Based on Nested Local Feedback. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 3562-3573.	5.4	9
110	The Flipped Voltage Follower: Theory and Applications. Lecture Notes in Electrical Engineering, 2013, , 269-287.	0.4	9
111	Web-Based Remote Learning of Communication Systems: A Successful Experience. International Journal of Electrical Engineering and Education, 2003, 40, 169-174.	0.8	8
112	A low-voltage low-power QFC-based Sigma-Delta modulator for electroencephalogram applications. , 2006, , .		8
113	Low-power baseband filter for zero-intermediate frequency digital video broadcasting terrestrial/handheld receivers. IET Circuits, Devices and Systems, 2009, 3, 291-301.	1.4	8
114	Design of Two-Stage Class AB CMOS Buffers: A Systematic Approach. ETRI Journal, 2011, 33, 393-400.	2.0	8
115	Slew rate enhancement based on use of squaring circuits. Electronics Letters, 2015, 51, 219-220.	1.0	8
116	Class AB differential difference amplifier for enhanced commonâ€mode feedback. Electronics Letters, 2017, 53, 454-456.	1.0	8
117	CMOS First-Order All-Pass Filter With 2-Hz Pole Frequency. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 294-303.	3.1	8
118	±0.25-V Class-AB CMOS Capacitance Multiplier and Precision Rectifiers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 830-842.	3.1	8
119	A 1 V Micropower FGMOS Class AB Log-Domain Filter. Analog Integrated Circuits and Signal Processing, 2004, 41, 137-145.	1.4	7
120	High-speed high-precision CMOS analog rank order filter with O(n) complexity. IEEE Journal of Solid-State Circuits, 2005, 40, 1238-1248.	5.4	7
121	A CMOS linear tunable transconductor for continuous-time tunable Gm-C filters. , 2008, , .		7
122	Comparison of programmable linear resistors based on quasi-floating gate MOSFETs. , 2008, , .		7
123	CMOS operational amplifiers with continuous-time capacitive common mode feedback. , 2010, , .		7
124	Low-cost analog interface circuit for resistive bridge sensors. , 2013, , .		7
125	University-industry collaboration chairs: Initiatives at the Public University of Navarre. , 2014, , .		7
126	Super class AB transconductor with slew-rate enhancement using QFG MOS techniques. , 2017, , .		7

#	Article	IF	CITATIONS
127	Phase-locked loop design for on-chip tuning applications. Electronics Letters, 2000, 36, 699.	1.0	6
128	A compact low-voltage four quadrant FGMOS multiplier. , 0, , .		6
129	Very Low Voltage Rail-to-Rail Programmable-Gain CMOS Amplifier. Analog Integrated Circuits and Signal Processing, 2003, 37, 269-273.	1.4	6
130	Low-Voltage CMOS Nonlinear Transconductors and Their Application to Companding Current-Mode Filters. Analog Integrated Circuits and Signal Processing, 2004, 38, 137-147.	1.4	6
131	Winner-Take-All Class AB Input Stage. Analog Integrated Circuits and Signal Processing, 2006, 46, 149-152.	1.4	6
132	Low-Voltage Tunable Pseudo-Differential Transconductor with High Linearity. ETRI Journal, 2009, 31, 576-584.	2.0	6
133	Low-voltage g <inf>m</inf> -enhanced CMOS differential pairs using positive feedback. , 2010, ,		6
134	Engineering outreach programs at the Public University of Navarre: A holistic approach. , 2013, , .		6
135	Highly linear wideâ€swing continuous tuning of CMOS transconductors. International Journal of Circuit Theory and Applications, 2014, 42, 831-841.	2.0	6
136	Balanced G _m â€C filters with improved linearity and power efficiency. International Journal of Circuit Theory and Applications, 2015, 43, 1147-1166.	2.0	6
137	Low-Voltage 0.81mW, 1–32 CMOS VGA With 5% Bandwidth Variations and â^38dB DC Rejection. IEEE Access, 2020, 8, 106310-106321.	4.2	6
138	Very low voltage CMOS companding filters based on the MOS translinear principle. , 0, , .		5
139	Techniques for very low-voltage operation of continuous-time analog CMOS circuits. , 0, , .		5
140	Micropower CMOS S&H circuit for ambient intelligence applications. Electronics Letters, 2005, 41, 935.	1.0	5
141	New Gain Programmable Current Mirrors Based on Current Steering. Midwest Symposium on Circuits and Systems, 2006, , .	1.0	5
142	Compact power-efficient class-AB CMOS exponential voltage to voltage converter. Electronics Letters, 2006, 42, 127.	1.0	5
143	A Very Linear OTA with V-I Conversion based on Quasi-Floating MOS Resistor. , 2007, , .		5
144	Highly linear wide input range CMOS OTA architectures operating in subthreshold and strong inversion. Microelectronic Engineering, 2007, 84, 273-279.	2.4	5

4

#	Article	IF	CITATIONS
145	Loop filter approximations for PLLs. , 2008, , .		5
146	Class-AB Fully Differential Voltage Followers. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55, 131-135.	3.0	5
147	Micropower class AB voltage followers with simple quiescent current control. , 2012, , .		5
148	An Op-Amp Approach for Bandpass VGAs With Constant Bandwidth. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 1144-1148.	3.0	5
149	Folded Cascode OTA with 5540 MHzpF/mA FoM. , 2018, , .		5
150	A 1.2-V Current-Mode RMS-to-DC Converter Based on a Novel Two-Quadrant Electronically Simulated MOS Translinear Loop. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 420-424.	3.0	5
151	An Enhanced Gain-Bandwidth Class-AB Miller op-amp With 23,800 MHz·pF/mW FOM, 11-16 Current Efficiency and Wide Range of Resistive and Capacitive Loads Driving Capability. IEEE Access, 2021, 9, 69783-69797.	4.2	5
152	Very Low Voltage CMOS Current Multiplier with Floating DC Level Shifters. Analog Integrated Circuits and Signal Processing, 2003, 37, 265-268.	1.4	4
153	A CMOS Transconductor with 90 dB SFDR and Low Sensitivity to Mismatch. , 0, , .		4
154	Two-Stage Differential Charge and Transresistance Amplifiers. Conference Record - IEEE Instrumentation and Measurement Technology Conference, 2006, , .	0.0	4
155	Compact Implementation of Linear Weighted CMOS Transconductance Adder Based on the Flipped Voltage Follower. , 0, , .		4
156	±1.5â€V 3â€mW CMOS V–I converter with 75â€dB SFDR for 6â€Vpp input swings. Electronics Letters 336.	s, 2007, 4 1.0	3, ₄
157	High slew rate two stage A/AB and AB/AB op-amps with phase lead compensation at output node and local common mode feedback. , 2008, , .		4
158	A â^'72 dB @ 2 MHz IM3 CMOS tunable pseudo-differential transconductor. , 2008, , .		4
159	Versatile multi-decade CMOS voltage-controlled oscillator with accurate amplitude and pulse width control. Analog Integrated Circuits and Signal Processing, 2009, 60, 83-92.	1.4	4
160	Micropower class AB CMOS current conveyor based on quasi-floating gate techniques. , 2009, , .		4
161	Techniques for the Design of Low Voltage Power Efficient Analog and Mixed Signal Circuits. , 2009, , .		4

162 Tunable rail-to-rail FGMOS transconductor., 2010,,.

#	Article	IF	CITATIONS
163	Accurate micropower class AB CMOS voltage-to-current converter. , 2011, , .		4
164	Energy harvesting microsystems based on the QFG MOS transistors. , 2015, , .		4
165	Improved common-mode feedback based on LCMFB techniques. , 2017, , .		4
166	Ultra-Low Power Subthreshold Quasi Floating Gate CMOS Logic Family for Energy Harvesting. , 2018, , .		4
167	On the Optimal Current Followers for Wide-Swing Current-Efficient Amplifiers. , 2018, , .		4
168	±0.3V Bulk-Driven Fully Differential Buffer with High Figures of Merit. Journal of Low Power Electronics and Applications, 2022, 12, 35.	2.0	4
169	A 1V micropower FGMOS log-domain filter. , 0, , .		3
170	Low-Voltage Analog Circuits Based on Wideband Capacitive Coupling. Analog Integrated Circuits and Signal Processing, 2003, 37, 253-257.	1.4	3
171	1.5V rail-to-rail programmable-gain CMOS amplifier. , 0, , .		3
172	New Compact and Power Efficient Dynamically Biased Cascode Mirrors and Telescopic Op-amps. , 0, , .		3
173	Performance Tradeoffs of Three Contactless Angle Detection Systems. , 2007, , .		3
174	Versatile Automotive Sensor Interface ASIC. , 2007, , .		3
175	Class AB Pseudo-Differential CMOS Squarer Circuit. , 2007, , .		3
176	Low-voltage, low-power rail-to-rail two stage op-amp with dynamic biasing and no Miller compensation. Midwest Symposium on Circuits and Systems, 2007, , .	1.0	3
177	Single Transistor High-Impedance Tail Current Source With Extended Common-Mode Input Range and Reduced Supply Requirements. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2007, 54, 581-585.	2.2	3
178	A power efficient and simple scheme for dynamically biasing cascode amplifiers and telescopic op-amps. The Integration VLSI Journal, 2008, 41, 539-543.	2.1	3
179	Linear-enhanced V to I converters based on MOS resistive source degeneration. , 2008, , .		3
180	Low-Voltage MOS Translinear Analog Signal Processing. Circuits, Systems, and Signal Processing, 2009, 28, 795-804.	2.0	3

#	Article	IF	CITATIONS
181	DC offset control with application in a zero-IF 0.18Âî¼m CMOS Bluetooth receiver chain. Analog Integrated Circuits and Signal Processing, 2010, 65, 15-20.	1.4	3
182	Class AB CMOS tunable transconductor. , 2010, , .		3
183	A low-voltage, high linear programmable triode transconductor. , 2010, , .		3
184	200 μW CMOS class AB unity-gain buffers with accurate quiescent current control. , 2010, , .		3
185	An ultra low energy 8-bit charge redistribution ADC for wireless sensors. , 2013, , .		3
186	A Simple Miller Compensation With Essential Bandwidth Improvement. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25, 3186-3192.	3.1	3
187	A super class-AB OTA with high output current and no open loop gain degradation. , 2017, , .		3
188	1-V 15-μW 130-nm CMOS Super Class AB OTA. , 2020, , .		3
189	Power Efficient Simple Technique to Convert a Reset-and-Hold Into a True-Sample-and-Hold Using an Auxiliary Output Stage. IEEE Access, 2020, 8, 66508-66516.	4.2	3
190	A family of AC amplifiers for ultraâ€low frequency operation. International Journal of Circuit Theory and Applications, 2021, 49, 3317-3327.	2.0	3
191	AC amplifiers with ultraâ€low corner frequency by using bootstrapping. Electronics Letters, 2021, 57, 203-205.	1.0	3
192	Fault Detection of Planetary Gears Based on Signal Space Constellations. Sensors, 2022, 22, 366.	3.8	3
193	A 1.5 V CMOS square-root domain filter. , 0, , .		2
194	A 70dB SFDR CMOS transconductor. , 0, , .		2
195	Low-voltage wide gm adjustable range highly linear BiCMOS OTA. IEICE Electronics Express, 2005, 2, 127-132.	0.8	2
196	Design of high-performance tunable filters based on current conveyors. , 0, , .		2
197	Input offset compensation scheme with reduced sensitivity to charge injection and leakage. Electronics Letters, 2006, 42, 340.	1.0	2
198	Design of highly linear multipliers using floating gate transistors and/or source degeneration resistor. , 2008, , .		2

#	Article	IF	CITATIONS
199	A novel CMOS triode transconductor based on current division. Analog Integrated Circuits and Signal Processing, 2012, 70, 113-121.	1.4	2
200	Improved technique for continuous tuning of CMOS transconductor. , 2013, , .		2
201	CMOS class-AB tunable voltage-feedback current operational amplifier. , 2014, , .		2
202	The role of university-industry liaisons in achieving comprehensive curricula in engineering. , 2014, , .		2
203	CMOS op-amps for biomedical applications. , 2014, , .		2
204	Design of flexible cost-efficient international engineering curricula at Public University of Navarre. , 2015, , .		2
205	Highly accurate CMOS second generation current conveyor and transconductor. , 2015, , .		2
206	Class AB two stage and folded cascode OpAmps based on a squaring circuit. , 2015, , .		2
207	Design of CMOS amplifiers with offset rejection using positive-feedback QFG transistors. Analog Integrated Circuits and Signal Processing, 2015, 85, 217-221.	1.4	2
208	Smart ecosystem for a sustainable, safe and integrated freight transport. , 2016, , .		2
209	New organizational and assessment frameworks for company internship programs. , 2017, , .		2
210	Energy-Efficient Amplifiers Based on Quasi-Floating Gate Techniques. Applied Sciences (Switzerland), 2021, 11, 3271.	2.5	2
211	Low-Voltage Power-Efficient Amplifiers for Emerging Applications. , 2009, , 147-165.		2
212	Super Class AB OTAs Based on Low-Power Adaptive Techniques at the Input Stage and the Active Load. Journal of Low Power Electronics, 2006, 2, 317-324.	0.6	2
213	Low-Voltage Universal Cell (LVUC): A Compact Analog/Digital Logic Block for Mixed Signal FPGAs. , 2006, , .		1
214	A Very Low-Power Class AB/AB Op-amp based Sigma-Delta Modulator for Biomedical Applications. Midwest Symposium on Circuits and Systems, 2006, , .	1.0	1
215	Low-voltage FGMOS-based balanced current scaling in moderate inversion. , 2007, , .		1
216	Versatile multidecade CMOS voltage controlled oscillator with accurate amplitude and PWM control. Midwest Symposium on Circuits and Systems, 2007, , .	1.0	1

#	Article	IF	CITATIONS
217	Low voltage gain boosting schemes for one stage operational amplifiers. , 2007, , .		1
218	Performance tradeoffs of integrated CMOS charge amplifiers. , 2009, , .		1
219	A CMOS QFG ECG amplifier with baseline stabilization. , 2010, , .		1
220	Micropower active-RC channel filter for a zero-IF Bluetooth receiver. Analog Integrated Circuits and Signal Processing, 2010, 63, 1-8.	1.4	1
221	Simple low voltage, low power implementations of circuits for V <inf>T</inf> extraction. , 2010, , .		1
222	Interactive didactical tools for e-learning in a communication systems course. , 2013, , .		1
223	On the optimal choice of the output stage in CMOS transconductors. , 2013, , .		1
224	Novel automatic digital calibration techniques for GMR sensors. , 2014, , .		1
225	Fostering Industry-Academia synergies in the curricular development of engineering education. , 2014, , .		1
226	Low power analog front-end electronics in deep submicrometer CMOS technology based on gain enhancement techniques. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 749, 90-95.	1.6	1
227	Engineering international programs at the public university of Navarre: A satisfactory on-going experience in a context of industrial globalization. , 2014, , .		1
228	The role of university-industry liaisons to enhance engineering curricular development. , 2014, , .		1
229	Constant g <inf>m</inf> rail-to-rail CMOS OpAmp with only one differential pair and switched level shifters. , 2015, , .		1
230	Turning a basic electronics lab into a low-cost communication systems lab. , 2015, , .		1
231	Low-Power Analog Channel Selection Filtering Techniques. Circuits, Systems, and Signal Processing, 2017, 36, 895-915.	2.0	1
232	Evaluating engineering competencies in curricular internships. , 2018, , .		1
233	Subsampling OFDM-Based Ultrasonic Data Communication Through Metallic Channels for Monitoring of Cargo Containers. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 4245-4250.	8.0	1
234	Recent Developments in Electronic Coin Detectors. Recent Patents on Electrical Engineering, 2008, 1, 146-154.	0.4	1

#	Article	IF	CITATIONS
235	Low-Voltage Rail-to-Rail Tunable FGMOS Transconductor. Analog Integrated Circuits and Signal Processing, 2003, 36, 251-254.	1.4	0
236	Compact Novel Floating Gate Offset Compensation Scheme with Low Sensitivity to Charge Injection, Clock Feedthrough and Leakage. , 2006, , .		0
237	Compact multiple output linear V to I converters using split differential pairs and applications in allpass OTAs. Electronics Letters, 2006, 42, 783.	1.0	0
238	Class AB fully differential voltage followers. , 2007, , .		0
239	Low-Voltage Universal Capacitive Threshold Logic gate and its application in m-out-of-n functions. Midwest Symposium on Circuits and Systems, 2007, , .	1.0	0
240	A Versatile Setup to Test and Program an Incremental Analog-to-Digital Converter. , 2007, , .		0
241	Alternative algorithm for low voltage operation of incremental ADCs. , 2007, , .		0
242	Low-Voltage CMOS Single Ended and Fully Differential Amplifier with Programmable Gain , 2007, , .		0
243	An Input Stage for the Implementation of Low-Voltage Rail to Rail Offset Compensated CMOS Comparators. , 2008, , .		0
244	A new scheme for DC offset compensation and its application to current mode and voltage mode D/A converters. , 2009, , .		0
245	Low-voltage CMOS cross-quad implementation based on dynamic positive feedback. , 2009, , .		0
246	Role of group evaluation and autoevaluation methods within the learnign process in engineering. , 2012, , .		0
247	Energy-efficient class AB CMOS Sample and Hold circuit. , 2013, , .		0
248	Contactless potentiometers for automotive applications. , 2013, , .		0
249	The influence of gender in the adoption of engineering studies. , 2014, , .		0
250	Industrial integrated circuit design techniques. , 2015, , .		0
251	Redefining best practices in company internships. , 2015, , .		0

252 Enhanced differential super class-AB OTA. , 2017, , .

#	Article	IF	CITATIONS
253	Offset compensation in a track and hold circuit. , 2017, , .		0
254	Modular Discrete and CMOS Integrated Implementations of High-Speed Analog Rank-Order Filters. Circuits, Systems, and Signal Processing, 2018, 37, 5637-5646.	2.0	0
255	Guest Editorial: Special issue on low voltage low power integrated circuits and systems. Microelectronics Journal, 2020, 95, 104674.	2.0	0
256	Energy-Efficient Symmetrical Cascode OTA in a 130 nm CMOS Process. , 2021, , .		0