Fabio Madonna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1258677/publications.pdf Version: 2024-02-01

Ελείο Μλρονικά

#	Article	IF	CITATIONS
1	What is the benefit of ceilometers for aerosol remote sensing? An answer from EARLINET. Atmospheric Measurement Techniques, 2014, 7, 1979-1997.	3.1	143
2	Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET. Atmospheric Chemistry and Physics, 2013, 13, 4429-4450.	4.9	95
3	EARLINET Single Calculus Chain – technical – Part 2: Calculation of optical products. Atmospheric Measurement Techniques, 2016, 9, 3009-3029.	3.1	68
4	Impact of varying lidar measurement and data processing techniques in evaluating cirrus cloud and aerosol direct radiative effects. Atmospheric Measurement Techniques, 2018, 11, 1639-1651.	3.1	34
5	Cloud ice caused by atmospheric mineral dust – Part 1: Parameterization of ice nuclei concentration in the NMME-DREAM model. Atmospheric Chemistry and Physics, 2016, 16, 11367-11378.	4.9	27
6	Vertically Resolved Precipitation Intensity Retrieved through a Synergy between the Ground-Based NASA MPLNET Lidar Network Measurements, Surface Disdrometer Datasets and an Analytical Model Solution. Remote Sensing, 2018, 10, 1102.	4.0	27
7	Effective resolution concepts for lidar observations. Atmospheric Measurement Techniques, 2015, 8, 5157-5176.	3.1	25
8	Statistical modelling of collocation uncertainty in atmospheric thermodynamic profiles. Atmospheric Measurement Techniques, 2014, 7, 1803-1816.	3.1	23
9	Making better sense of the mosaic of environmental measurement networks: aÂsystem-of-systems approach and quantitative assessment. Geoscientific Instrumentation, Methods and Data Systems, 2017, 6, 453-472.	1.6	23
10	Intercomparison of aerosol measurements performed with multi-wavelength Raman lidars, automatic lidars and ceilometers in the framework of INTERACT-II campaign. Atmospheric Measurement Techniques, 2018, 11, 2459-2475.	3.1	18
11	Use of automatic radiosonde launchers to measure temperature and humidity profiles from the GRUAN perspective. Atmospheric Measurement Techniques, 2020, 13, 3621-3649.	3.1	16
12	Assessment of Trends and Uncertainties in the Atmospheric Boundary Layer Height Estimated Using Radiosounding Observations over Europe. Atmosphere, 2021, 12, 301.	2.3	13
13	Sensitivity of trends to estimation methods and quantification of subsampling effects in global radiosounding temperature and humidity time series. International Journal of Climatology, 2021, 41, E1992.	3.5	11
14	The New Radiosounding HARMonization (RHARM) Data Set of Homogenized Radiosounding Temperature, Humidity, and Wind Profiles With Uncertainties. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	10
15	Midâ€ŧropospheric supercooled liquid water observation consistent with nucleation induced by a mountain lee wave. Geophysical Research Letters, 2009, 36, .	4.0	7
16	Quantifying the value of redundant measurements at GCOS Reference Upper-Air Network sites. Atmospheric Measurement Techniques, 2014, 7, 3813-3823.	3.1	7
17	Study of thin clouds at CNR-IMAA Atmospheric Observatory (CIAO). Annals of Geophysics, 2014, ,	1.0	3
18	Mineralogy Sensitive Immersion Freezing Parameterization in DREAM. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	3

#	Article	IF	CITATIONS
19	Study of Droplet Activation in Thin Clouds Using Ground-Based Raman Lidar and Ancillary Remote Sensors. EPJ Web of Conferences, 2016, 119, 16008.	0.3	1
20	The lesson learnt during interact - I and INTERACT - II actris measurement campaigns. EPJ Web of Conferences, 2018, 176, 11002.	0.3	1
21	Discussion on "A combined estimate of global temperature― Environmetrics, 2022, 33, .	1.4	1
22	Intercomparison of Vaisala RS92 and RS41 Radiosonde Temperature Sensors under Controlled Laboratory Conditions. Atmosphere, 2022, 13, 773.	2.3	1