Alexey V Dobrydnev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1258251/publications.pdf

Version: 2024-02-01

840776 996975 32 276 11 15 citations g-index h-index papers 34 34 34 150 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Expanding the chemical space of 3(5)-functionalized 1,2,4-triazoles. Chemistry of Heterocyclic Compounds, 2022, 58, 116-128.	1.2	9
2	Synthesis of carbo- and heterofused 5-amino-2H-1,2-thiazine 1,1-dioxides via the CSIC reaction strategy. Tetrahedron, 2022, 109, 132685.	1.9	4
3	Multigram Synthesis of Advanced 6,6â€Difluorospiro[3.3]heptaneâ€Derived Building Blocks. European Journal of Organic Chemistry, 2021, 2021, 6541-6550.	2.4	3
4	Updating the CSIC Reaction (2003–2020). European Journal of Organic Chemistry, 2021, 2021, 1229-1248.	2.4	16
5	A study of atypical reaction of methyl (triphenylphosphoranylidene)-acetate with 3a-substituted bicyclic \hat{l}^2 -keto- \hat{l}^3 -sultams. Chemistry of Heterocyclic Compounds, 2021, 57, 207-211.	1.2	2
6	Reaction of Dialkylaminosulfur Trifluorides with βâ€Keto Sulfonamides and βâ€Keto Sulfones. ChemistrySelect, 2021, 6, 3084-3088.	1.5	0
7	Synthesis of α-substituted 2-(1H-1,2,4-triazol-3-yl)acetates and 5-amino-2,4-dihydro-3H-pyrazol-3-ones via the Pinner strategy. Tetrahedron Letters, 2021, 69, 152956.	1.4	6
8	Fluorineâ€Labelled Spiro[3.3]heptaneâ€Derived Building Blocks: Is Single Fluorine the Best?. European Journal of Organic Chemistry, 2021, 2021, 4897-4910.	2.4	5
9	Synthesis of sp3-Enriched β-Fluoro Sulfonyl Chlorides. Synthesis, 2021, 53, 1771-1784.	2.3	1
10	An optimized method for synthesis and purification of 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN). MethodsX, 2020, 7, 100768.	1.6	5
11	The reactivity of tetrahydropyrrolo [1,2-b] isothiazol-3(2H)-one 1,1-dioxides. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2020, 151, 1759-1772.	1.8	9
12	1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) Sensory Thresholds in Riesling Wine. Foods, 2020, 9, 606.	4.3	13
13	Strategy for the synthesis of 2,2-disubstituted 8-azachromanones via Horner–Wadsworth–Emmons olefination. Chemistry of Heterocyclic Compounds, 2020, 56, 213-218.	1.2	0
14	An unexpected synthesis of \hat{l}^2 -amino- $\hat{l}\pm$ -mesyl- \hat{l}^3 -sultams upon mesylation of hindered $\hat{l}\pm$ -aminonitriles. Chemistry of Heterocyclic Compounds, 2020, 56, 386-391.	1.2	4
15	Synthesis, biological evaluation, and modeling studies of 1,3-disubstituted cyclobutane-containing analogs of combretastatin A4. Journal of Molecular Structure, 2020, 1210, 128025.	3.6	10
16	Synthesis of 4,4â€Disubstituted 1,2â€Thiazinaneâ€5â€one 1,1â€Dioxides via the CSIC ^[â‰] Reaction Strategy. ChemistrySelect, 2020, 5, 5573-5576.	on 1.5	7
17	Quercetin-Amino Acid Conjugates are Promising Anti-Cancer Agents in Drug Discovery Projects. Mini-Reviews in Medicinal Chemistry, 2020, 20, 107-122.	2.4	10
18	Absorption of 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) from wine by bottle closures. European Food Research and Technology, 2019, 245, 2343-2351.	3.3	10

#	Article	IF	CITATIONS
19	2,2â€Difluorovinyl Pinacolborane – A New Versatile Reagent for the Suzuki–Miyaura Reaction. European Journal of Organic Chemistry, 2019, 2019, 6417-6421.	2.4	6
20	Expected and unforeseen reactions of 2,3,3-trimethyl- $1\hat{l}$ »6-isothiazolidine-1,1,4-trione and their spiro derivative. Tetrahedron, 2019, 75, 1231-1245.	1.9	15
21	Synthesis of Novel 3  a â€Substituted Tetrahydroâ€l H â€lλ 6 â€pyrrolo[1,2―b]isothiazoleâ€l,1,3(2 H) through the CSIC Reaction. ChemistrySelect, 2019, 4, 4933-4937.	â€triones 1.5	13
22	The simplest synthesis of 5,5-disubstituted and spiranic methyl 4-amino-2,2-dioxo-2,5-dihydro-1,2λ6-oxathiole-3-carboxylates. Tetrahedron Letters, 2018, 59, 1581-1582.	1.4	13
23	Influence of Carbon Nanotubes and Its Derivatives on Tumor Cells In Vitro and Biochemical Parameters, Cellular Blood Composition In Vivo. Nanoscale Research Letters, 2018, 13, 286.	5 . 7	17
24	4-Amino-2,3-dihydro- $1\hat{i}$ »6-isothiazole-1,1-dioxides and their chemical properties evaluation. Molecular Diversity, 2018, 22, 919-927.	3.9	13
25	One-pot synthesis of methyl 4-amino-2,3,3-trisubstituted-1,1-dioxo-2,3-dihydro-1H-1λ6-isothiazole-5-carboxylates. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2018, 149, 1827-1833.	1.8	14
26	Synthesis of a series of tetraminic acid sulfone analogs. Monatshefte Für Chemie, 2017, 148, 939-946.	1.8	24
27	Synthetic approaches to 1,3-propanesultams (microreview). Chemistry of Heterocyclic Compounds, 2017, 53, 492-494.	1.2	14
28	Synthesis of spiro 2-(5-amino-2,3-dihydro-3-oxopyrrol-4-yl)-1,3-dialkylbenzimidazolium chlorides. Monatshefte Fļr Chemie, 2015, 146, 931-939.	1.8	0
29	Effect of single-walled carbon nanotubes on tumor cells viability and formation of multicellular tumor spheroids. Nanoscale Research Letters, 2015, 10, 150.	5.7	8
30	Synthesis of the First Representatives of Spiro- $1\hat{l}$ »6-isothiazolidine-1,1,4-triones. Synthesis, 2015, 47, 2523-2528.	2.3	20
31	Cyclic α-amino acids as precursors for synthesis of 2-amino-3-hetarylpyrrolin-4-ones and their spiro derivatives. Monatshefte Für Chemie, 2012, 143, 779-789.	1.8	3
32	Synthesis and properties of 3-cyano-3-hetaryl-ylidene-2-oxopropyl ethanethioates and 4-cyano-4-hetarylylidene-3-oxobutyl ethanethioates. Chemistry of Heterocyclic Compounds, 2010, 46, 887-895.	1.2	2