Rodolfo Thomé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1257945/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chloroquine reduces Th17 cell differentiation by stimulating T-bet expression in T cells. Cellular and Molecular Immunology, 2021, 18, 779-780.	4.8	2
2	Components from spider venom activate macrophages against glioblastoma cells: new potential adjuvants for anticancer immunotherapy. Journal of Biochemistry, 2021, 170, 51-68.	0.9	5
3	IFN-β Acts on Monocytes to Ameliorate CNS Autoimmunity by Inhibiting Proinflammatory Cross-Talk Between Monocytes and Th Cells. Frontiers in Immunology, 2021, 12, 679498.	2.2	8
4	The SNX-482 peptide from Hysterocrates gigas spider acts as an immunomodulatory molecule activating macrophages. Peptides, 2021, 146, 170648.	1.2	7
5	Can tetracyclines ensure help in multiple sclerosis immunotherapy?. Journal of Clinical and Translational Research, 2021, 7, 22-33.	0.3	2
6	A serine protease inhibitor induces type 1 regulatory T cells through IFN-γ/STAT1 signaling. Cellular and Molecular Immunology, 2020, 17, 1004-1006.	4.8	4
7	IL-9 Controls Central Nervous System Autoimmunity by Suppressing GM-CSF Production. Journal of Immunology, 2020, 204, 531-539.	0.4	13
8	Interferon-γ/Interleukin-27 Axis Induces Programmed Death Ligand 1 Expression in Monocyte-Derived Dendritic Cells and Restores Immune Tolerance in Central Nervous System Autoimmunity. Frontiers in Immunology, 2020, 11, 576752.	2.2	7
9	Matrine Inhibits CNS Autoimmunity Through an IFN-β-Dependent Mechanism. Frontiers in Immunology, 2020, 11, 569530.	2.2	17
10	Oligodendrocyte-derived extracellular vesicles as antigen-specific therapy for autoimmune neuroinflammation in mice. Science Translational Medicine, 2020, 12, .	5.8	54
11	Dimethyl fumarate suppresses granulocyte macrophage colony-stimulating factor–producing Th1 cells in CNS neuroinflammation. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, e729.	3.1	8
12	Paracoccidioides brasiliensis infection increases regulatory T cell counts in female C57BL/6 mice infected via two distinct routes. Immunobiology, 2020, 225, 151963.	0.8	1
13	A serine protease inhibitor suppresses autoimmune neuroinflammation by activating the STING/IFN-β axis in macrophages. Cellular and Molecular Immunology, 2020, 17, 1278-1280.	4.8	7
14	Primaquine elicits Foxp3+ regulatory T cells with a superior ability to limit CNS autoimmune inflammation. Journal of Autoimmunity, 2020, 114, 102505.	3.0	3
15	Comprehensive Analysis of the Immune and Stromal Compartments of the CNS in EAE Mice Reveal Pathways by Which Chloroquine Suppresses Neuroinflammation. Brain Sciences, 2020, 10, 348.	1.1	1
16	Spider venom administration impairs glioblastoma growth and modulates immune response in a non-clinical model. Scientific Reports, 2020, 10, 5876.	1.6	10
17	Mdivi-1, a mitochondrial fission inhibitor, modulates T helper cells and suppresses the development of experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 2019, 16, 149.	3.1	30
18	Immunomodulatory and neuroprotective mechanisms of Huangqi glycoprotein treatment in experimental autoimmune encephalomyelitis. Folia Neuropathologica, 2019, 57, 117-128.	0.5	5

Rodolfo Thomé

#	Article	IF	CITATIONS
19	Roles of GM-CSF in the Pathogenesis of Autoimmune Diseases: An Update. Frontiers in Immunology, 2019, 10, 1265.	2.2	132
20	The selective retinoic acid receptor-α agonist AM580 fails to control autoimmune neuroinflammation. Cellular and Molecular Immunology, 2019, 16, 727-729.	4.8	2
21	Chloroquineâ€treated dendritic cells require STAT1 signaling for their tolerogenic activity. European Journal of Immunology, 2018, 48, 1228-1234.	1.6	12
22	Modulation of dendritic cell by pathogen antigens: Where do we stand?. Immunology Letters, 2018, 196, 91-102.	1.1	15
23	Hypoglycemic, hypolipidemic and antioxidant effects of iridoid glycosides extracted from <i>Corni fructus</i> : possible involvement of the PI3K–Akt/PKB signaling pathway. RSC Advances, 2018, 8, 30539-30549.	1.7	11
24	The impact of metabolic reprogramming on dendritic cell function. International Immunopharmacology, 2018, 63, 84-93.	1.7	14
25	FSD-C10, a Fasudil derivative, promotes neuroregeneration through indirect and direct mechanisms. Scientific Reports, 2017, 7, 41227.	1.6	14
26	Low expression of complement inhibitory protein CD59 contributes to humoral autoimmunity against astrocytes. Brain, Behavior, and Immunity, 2017, 65, 173-182.	2.0	20
27	Matrine Treatment Blocks NogoA-Induced Neural Inhibitory Signaling Pathway in Ongoing Experimental Autoimmune Encephalomyelitis. Molecular Neurobiology, 2017, 54, 8404-8418.	1.9	31
28	Induction of Peripheral Tolerance in Ongoing Autoimmune Inflammation Requires Interleukin 27 Signaling in Dendritic Cells. Frontiers in Immunology, 2017, 8, 1392.	2.2	23
29	MHC-I and PirB Upregulation in the Central and Peripheral Nervous System following Sciatic Nerve Injury. PLoS ONE, 2016, 11, e0161463.	1.1	13
30	Enhanced Immune Response in Immunodeficient Mice Improves Peripheral Nerve Regeneration Following Axotomy. Frontiers in Cellular Neuroscience, 2016, 10, 151.	1.8	34
31	Paracoccidioides brasiliensis infection promotes thymic disarrangement and premature egress of mature lymphocytes expressing prohibitive TCRs. BMC Infectious Diseases, 2016, 16, 209.	1.3	9
32	Severe Changes in Thymic Microenvironment in a Chronic Experimental Model of Paracoccidioidomycosis. PLoS ONE, 2016, 11, e0164745.	1.1	3
33	Tolerogenic Vaccination with <scp>MOG</scp> /VitD Overcomes Aggravating Effect of <i>C. albicans</i> in Experimental Encephalomyelitis. CNS Neuroscience and Therapeutics, 2016, 22, 807-816.	1.9	9
34	Artesunate Ameliorates Experimental Autoimmune Encephalomyelitis by Inhibiting Leukocyte Migration to the Central Nervous System. CNS Neuroscience and Therapeutics, 2016, 22, 707-714.	1.9	26
35	Phosphodiesterase-5 inhibition promotes remyelination by MCP-1/CCR-2 and MMP-9 regulation in a cuprizone-induced demyelination model. Experimental Neurology, 2016, 275, 143-153.	2.0	24
36	Protection against <i>Paracoccidioides brasiliensis</i> infection in mice treated with modulated dendritic cells relies on inhibition of interleukinâ€10 production by <scp>CD</scp> 8 ⁺ T cells. Immunology, 2015, 146, 486-495.	2.0	7

Rodolfo Thomé

#	Article	IF	CITATIONS
37	Violacein Treatment Modulates Acute and Chronic Inflammation through the Suppression of Cytokine Production and Induction of Regulatory T Cells. PLoS ONE, 2015, 10, e0125409.	1.1	25
38	Nitric oxide plays a key role in the suppressive activity of tolerogenic dendritic cells. Cellular and Molecular Immunology, 2015, 12, 384-386.	4.8	18
39	Exacerbation of Autoimmune Neuro-Inflammation in Mice Cured from Blood-Stage Plasmodium berghei Infection. PLoS ONE, 2014, 9, e110739.	1.1	11
40	Dendritic cells treated with crude <i><scp>P</scp>lasmodium berghei</i> extracts acquire immuneâ€modulatory properties and suppress the development of autoimmune neuroinflammation. Immunology, 2014, 143, 164-173.	2.0	14
41	Primaquine Treatment Suppresses Experimental Autoimmune Encephalomyelitis Severity. CNS Neuroscience and Therapeutics, 2014, 20, 1061-1064.	1.9	4
42	Role of iNOS-NO-cGMP signaling in modulation of inflammatory and myelination processes. Brain Research Bulletin, 2014, 104, 60-73.	1.4	43
43	Dendritic cells treated with chloroquine modulate experimental autoimmune encephalomyelitis. Immunology and Cell Biology, 2014, 92, 124-132.	1.0	39
44	Chloroquine: Modes of action of an undervalued drug. Immunology Letters, 2013, 153, 50-57.	1.1	117
45	Chloroquine Treatment Enhances Regulatory T Cells and Reduces the Severity of Experimental Autoimmune Encephalomyelitis. PLoS ONE, 2013, 8, e65913.	1.1	64
46	Oral tolerance and OVA-induced tolerogenic dendritic cells reduce the severity of collagen/ovalbumin-induced arthritis in mice. Cellular Immunology, 2012, 280, 113-123.	1.4	21
47	Yacon (Smallanthus sonchifolius)-derived fructooligosaccharides improves the immune parameters in the mouse. Nutrition Research, 2012, 32, 884-892.	1.3	71