Rodolfo Thomé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1257945/publications.pdf

Version: 2024-02-01

47 papers 1,024 citations

471509 17 h-index 30 g-index

51 all docs

51 docs citations

51 times ranked

1819 citing authors

#	Article	IF	CITATIONS
1	Roles of GM-CSF in the Pathogenesis of Autoimmune Diseases: An Update. Frontiers in Immunology, 2019, 10, 1265.	4.8	132
2	Chloroquine: Modes of action of an undervalued drug. Immunology Letters, 2013, 153, 50-57.	2.5	117
3	Yacon (Smallanthus sonchifolius)-derived fructooligosaccharides improves the immune parameters in the mouse. Nutrition Research, 2012, 32, 884-892.	2.9	71
4	Chloroquine Treatment Enhances Regulatory T Cells and Reduces the Severity of Experimental Autoimmune Encephalomyelitis. PLoS ONE, 2013, 8, e65913.	2. 5	64
5	Oligodendrocyte-derived extracellular vesicles as antigen-specific therapy for autoimmune neuroinflammation in mice. Science Translational Medicine, 2020, 12, .	12.4	54
6	Role of iNOS-NO-cGMP signaling in modulation of inflammatory and myelination processes. Brain Research Bulletin, 2014, 104, 60-73.	3.0	43
7	Dendritic cells treated with chloroquine modulate experimental autoimmune encephalomyelitis. Immunology and Cell Biology, 2014, 92, 124-132.	2.3	39
8	Enhanced Immune Response in Immunodeficient Mice Improves Peripheral Nerve Regeneration Following Axotomy. Frontiers in Cellular Neuroscience, 2016, 10, 151.	3.7	34
9	Matrine Treatment Blocks NogoA-Induced Neural Inhibitory Signaling Pathway in Ongoing Experimental Autoimmune Encephalomyelitis. Molecular Neurobiology, 2017, 54, 8404-8418.	4.0	31
10	Mdivi-1, a mitochondrial fission inhibitor, modulates T helper cells and suppresses the development of experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 2019, 16, 149.	7.2	30
11	Artesunate Ameliorates Experimental Autoimmune Encephalomyelitis by Inhibiting Leukocyte Migration to the Central Nervous System. CNS Neuroscience and Therapeutics, 2016, 22, 707-714.	3.9	26
12	Violacein Treatment Modulates Acute and Chronic Inflammation through the Suppression of Cytokine Production and Induction of Regulatory T Cells. PLoS ONE, 2015, 10, e0125409.	2.5	25
13	Phosphodiesterase-5 inhibition promotes remyelination by MCP-1/CCR-2 and MMP-9 regulation in a cuprizone-induced demyelination model. Experimental Neurology, 2016, 275, 143-153.	4.1	24
14	Induction of Peripheral Tolerance in Ongoing Autoimmune Inflammation Requires Interleukin 27 Signaling in Dendritic Cells. Frontiers in Immunology, 2017, 8, 1392.	4.8	23
15	Oral tolerance and OVA-induced tolerogenic dendritic cells reduce the severity of collagen/ovalbumin-induced arthritis in mice. Cellular Immunology, 2012, 280, 113-123.	3.0	21
16	Low expression of complement inhibitory protein CD59 contributes to humoral autoimmunity against astrocytes. Brain, Behavior, and Immunity, 2017, 65, 173-182.	4.1	20
17	Nitric oxide plays a key role in the suppressive activity of tolerogenic dendritic cells. Cellular and Molecular Immunology, 2015, 12, 384-386.	10.5	18
18	Matrine Inhibits CNS Autoimmunity Through an IFN-β-Dependent Mechanism. Frontiers in Immunology, 2020, 11, 569530.	4.8	17

#	Article	IF	CITATIONS
19	Modulation of dendritic cell by pathogen antigens: Where do we stand?. Immunology Letters, 2018, 196, 91-102.	2.5	15
20	Dendritic cells treated with crude <i><scp>P</scp>lasmodium berghei</i> extracts acquire immuneâ€modulatory properties and suppress the development of autoimmune neuroinflammation. Immunology, 2014, 143, 164-173.	4.4	14
21	FSD-C10, a Fasudil derivative, promotes neuroregeneration through indirect and direct mechanisms. Scientific Reports, 2017, 7, 41227.	3.3	14
22	The impact of metabolic reprogramming on dendritic cell function. International Immunopharmacology, 2018, 63, 84-93.	3.8	14
23	MHC-I and PirB Upregulation in the Central and Peripheral Nervous System following Sciatic Nerve Injury. PLoS ONE, 2016, 11, e0161463.	2.5	13
24	IL-9 Controls Central Nervous System Autoimmunity by Suppressing GM-CSF Production. Journal of Immunology, 2020, 204, 531-539.	0.8	13
25	Chloroquineâ€treated dendritic cells require STAT1 signaling for their tolerogenic activity. European Journal of Immunology, 2018, 48, 1228-1234.	2.9	12
26	Exacerbation of Autoimmune Neuro-Inflammation in Mice Cured from Blood-Stage Plasmodium berghei Infection. PLoS ONE, 2014, 9, e110739.	2.5	11
27	Hypoglycemic, hypolipidemic and antioxidant effects of iridoid glycosides extracted from ⟨i⟩Corni fructus⟨ i⟩: possible involvement of the PI3K–Akt/PKB signaling pathway. RSC Advances, 2018, 8, 30539-30549.	3.6	11
28	Spider venom administration impairs glioblastoma growth and modulates immune response in a non-clinical model. Scientific Reports, 2020, 10, 5876.	3.3	10
29	Paracoccidioides brasiliensis infection promotes thymic disarrangement and premature egress of mature lymphocytes expressing prohibitive TCRs. BMC Infectious Diseases, 2016, 16, 209.	2.9	9
30	Tolerogenic Vaccination with <scp>MOG</scp> /VitD Overcomes Aggravating Effect of <i>C. albicans</i> in Experimental Encephalomyelitis. CNS Neuroscience and Therapeutics, 2016, 22, 807-816.	3.9	9
31	Dimethyl fumarate suppresses granulocyte macrophage colony-stimulating factor–producing Th1 cells in CNS neuroinflammation. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, e729.	6.0	8
32	IFN- \hat{l}^2 Acts on Monocytes to Ameliorate CNS Autoimmunity by Inhibiting Proinflammatory Cross-Talk Between Monocytes and Th Cells. Frontiers in Immunology, 2021, 12, 679498.	4.8	8
33	Protection against <i>Paracoccidioides brasiliensis</i> infection in mice treated with modulated dendritic cells relies on inhibition of interleukinâ€10 production by <scp>CD</scp> 8 ⁺ T cells. Immunology, 2015, 146, 486-495.	4.4	7
34	Interferon- \hat{I}^3 /Interleukin-27 Axis Induces Programmed Death Ligand 1 Expression in Monocyte-Derived Dendritic Cells and Restores Immune Tolerance in Central Nervous System Autoimmunity. Frontiers in Immunology, 2020, 11, 576752.	4.8	7
35	A serine protease inhibitor suppresses autoimmune neuroinflammation by activating the STING/IFN- \hat{l}^2 axis in macrophages. Cellular and Molecular Immunology, 2020, 17, 1278-1280.	10.5	7
36	The SNX-482 peptide from Hysterocrates gigas spider acts as an immunomodulatory molecule activating macrophages. Peptides, 2021, 146, 170648.	2.4	7

3

#	Article	IF	CITATIONS
37	Immunomodulatory and neuroprotective mechanisms of Huangqi glycoprotein treatment in experimental autoimmune encephalomyelitis. Folia Neuropathologica, 2019, 57, 117-128.	1.2	5
38	Components from spider venom activate macrophages against glioblastoma cells: new potential adjuvants for anticancer immunotherapy. Journal of Biochemistry, 2021, 170, 51-68.	1.7	5
39	Primaquine Treatment Suppresses Experimental Autoimmune Encephalomyelitis Severity. CNS Neuroscience and Therapeutics, 2014, 20, 1061-1064.	3.9	4
40	A serine protease inhibitor induces type 1 regulatory T cells through IFN- $\hat{l}^3/STAT1$ signaling. Cellular and Molecular Immunology, 2020, 17, 1004-1006.	10.5	4
41	Severe Changes in Thymic Microenvironment in a Chronic Experimental Model of Paracoccidioidomycosis. PLoS ONE, 2016, 11, e0164745.	2.5	3
42	Primaquine elicits Foxp3+ regulatory T cells with a superior ability to limit CNS autoimmune inflammation. Journal of Autoimmunity, 2020, 114, 102505.	6.5	3
43	The selective retinoic acid receptor- \hat{l}_{\pm} agonist AM580 fails to control autoimmune neuroinflammation. Cellular and Molecular Immunology, 2019, 16, 727-729.	10.5	2
44	Chloroquine reduces Th17 cell differentiation by stimulating T-bet expression in T cells. Cellular and Molecular Immunology, 2021, 18, 779-780.	10.5	2
45	Can tetracyclines ensure help in multiple sclerosis immunotherapy?. Journal of Clinical and Translational Research, 2021, 7, 22-33.	0.3	2
46	Paracoccidioides brasiliensis infection increases regulatory T cell counts in female C57BL/6 mice infected via two distinct routes. Immunobiology, 2020, 225, 151963.	1.9	1
47	Comprehensive Analysis of the Immune and Stromal Compartments of the CNS in EAE Mice Reveal Pathways by Which Chloroquine Suppresses Neuroinflammation. Brain Sciences, 2020, 10, 348.	2.3	1