
Yoshio Okada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1257753/publications.pdf Version: 2024-02-01

Υσεμίο Οκληλ

#	Article	IF	CITATIONS
1	Boundary Element Fast Multipole Method for Enhanced Modeling of Neurophysiological Recordings. IEEE Transactions on Biomedical Engineering, 2021, 68, 308-318.	4.2	21
2	Influence of unfused cranial bones on magnetoencephalography signals in human infants. Clinical Neurophysiology, 2021, 132, 708-719.	1.5	0
3	Alkaline brain pH shift in rodent lithium-pilocarpine model of epilepsy with chronic seizures. Brain Research, 2021, 1758, 147345.	2.2	5
4	Multiscale Modeling of EEG/MEG Response of a Compact Cluster of Tightly Spaced Pyramidal Neocortical Neurons. , 2021, , 195-211.		0
5	Epileptic Activity Intrinsically Generated in the Human Cerebellum. Annals of Neurology, 2020, 88, 418-422.	5.3	0
6	Direct Activation of Cortical Neurons in the Primary Somatosensory Cortex of the Rat in Vivo Using Focused Ultrasound. Ultrasound in Medicine and Biology, 2020, 46, 2349-2360.	1.5	1
7	Vibrotactile piezoelectric stimulation system with precise and versatile timing control for somatosensory research. Journal of Neuroscience Methods, 2019, 317, 29-36.	2.5	3
8	Focused ultrasound transiently increases membrane conductance in isolated crayfish axon. Journal of Neurophysiology, 2019, 121, 480-489.	1.8	12
9	MNE Scan: Software for real-time processing of electrophysiological data. Journal of Neuroscience Methods, 2018, 303, 55-67.	2.5	17
10	Reply to "Prospective advances in fetal biomagnetometry – Challenges remain― Clinical Neurophysiology, 2018, 129, 505-506.	1.5	0
11	Noise cancellation for a whole-head magnetometer-based MEG system in hospital environment. Biomedical Physics and Engineering Express, 2018, 4, 055014.	1.2	6
12	Versatile synchronized real-time MEG hardware controller for large-scale fast data acquisition. Review of Scientific Instruments, 2017, 88, 055110.	1.3	4
13	BabyMEG: A whole-head pediatric magnetoencephalography system for human brain development research. Review of Scientific Instruments, 2016, 87, 094301.	1.3	66
14	Direct neural current imaging in an intact cerebellum with magnetic resonance imaging. NeuroImage, 2016, 132, 477-490.	4.2	27
15	Editorial on emerging neuroimaging tools for studying normal and abnormal human brain development. Frontiers in Human Neuroscience, 2015, 9, 127.	2.0	5
16	Invariance in current dipole moment density across brain structures and species: Physiological constraint for neuroimaging. NeuroImage, 2015, 111, 49-58.	4.2	48
17	Localization of the Epileptogenic Foci in Tuberous Sclerosis Complex: A Pediatric Case Report. Frontiers in Human Neuroscience, 2014, 8, 175.	2.0	26
18	Cortical Somatosensory Reorganization in Children with Spastic Cerebral Palsy: A Multimodal Neuroimaging Study. Frontiers in Human Neuroscience, 2014, 8, 725.	2.0	90

Υοςηίο Οκάδα

#	ARTICLE	IF	CITATIONS
19	Targeting of White Matter Tracts with Transcranial Magnetic Stimulation. Brain Stimulation, 2014, 7, 80-84.	1.6	56
20	Effects of sutures and fontanels on MEG and EEG source analysis in a realistic infant head model. NeuroImage, 2013, 76, 282-293.	4.2	88
21	Evoked magnetic fields from primary and secondary somatosensory cortices: A reliable tool for assessment of cortical processing in the neonatal period. Clinical Neurophysiology, 2012, 123, 2377-2383.	1.5	22
22	Maturation of somatosensory cortical processing from birth to adulthood revealed by magnetoencephalography. Clinical Neurophysiology, 2009, 120, 1552-1561.	1.5	74
23	Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals. Journal of Physiology, 2006, 575, 925-936.	2.9	315
24	Evaluation of the distortion of EEG signals caused by a hole in the skull mimicking the fontanel in the skull of human neonates. Clinical Neurophysiology, 2005, 116, 1141-1152.	1.5	56
25	Comparison of MEG and EEG on the basis of somatic evoked responses elicited by stimulation of the snout in the juvenile swine. Clinical Neurophysiology, 1999, 110, 214-229.	1.5	64