Scott J Hollister

List of Publications by Citations

Source: https://exaly.com/author-pdf/1257199/scott-j-hollister-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 183
 16,444
 68
 127

 papers
 citations
 h-index
 g-index

 193
 17,960
 5.8
 7.07

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
183	Porous scaffold design for tissue engineering. <i>Nature Materials</i> , 2005 , 4, 518-24	27	2916
182	Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. <i>Biomaterials</i> , 2005 , 26, 4817-27	15.6	1205
181	Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. <i>Biomaterials</i> , 2003 , 24, 181-94	15.6	567
180	Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. <i>Biomaterials</i> , 2002 , 23, 4095-103	15.6	548
179	Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. <i>Biomaterials</i> , 2002 , 23, 1283-93	15.6	443
178	Bioresorbable airway splint created with a three-dimensional printer. <i>New England Journal of Medicine</i> , 2013 , 368, 2043-5	59.2	432
177	A comparison of homogenization and standard mechanics analyses for periodic porous composites. <i>Computational Mechanics</i> , 1992 , 10, 73-95	4	325
176	Scaffold design and manufacturing: from concept to clinic. Advanced Materials, 2009, 21, 3330-42	24	287
175	Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. <i>Science Translational Medicine</i> , 2015 , 7, 285ra64	17.5	286
174	A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. <i>Journal of Biomechanics</i> , 2004 , 37, 623-36	2.9	281
173	Craniofacial tissue engineering by stem cells. <i>Journal of Dental Research</i> , 2006 , 85, 966-79	8.1	279
172	A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. <i>Journal of Biomechanics</i> , 1994 , 27, 433-44	2.9	276
171	Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. <i>Biomaterials</i> , 2006 , 27, 3964-72	15.6	236
170	Engineering craniofacial scaffolds. Orthodontics and Craniofacial Research, 2005, 8, 162-73	3	231
169	Hydroxyapatite implants with designed internal architecture. <i>Journal of Materials Science: Materials in Medicine</i> , 2001 , 12, 471-8	4.5	185
168	Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. <i>Tissue Engineering</i> , 2004 , 10, 1376-85		178
167	Homogenization theory and digital imaging: A basis for studying the mechanics and design principles of bone tissue. <i>Biotechnology and Bioengineering</i> , 1994 , 43, 586-96	4.9	175

(2011-2000)

166	An image-based approach for designing and manufacturing craniofacial scaffolds. <i>International Journal of Oral and Maxillofacial Surgery</i> , 2000 , 29, 67-71	2.9	174
165	The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 92, 359-68	5.4	171
164	Tissue engineering bone-ligament complexes using fiber-guiding scaffolds. <i>Biomaterials</i> , 2012 , 33, 137-4	15 5.6	165
163	Nondestructive micro-computed tomography for biological imaging and quantification of scaffold-bone interaction in vivo. <i>Biomaterials</i> , 2007 , 28, 2479-90	15.6	164
162	Trabecular bone remodeling: an experimental model. <i>Journal of Biomechanics</i> , 1991 , 24 Suppl 1, 135-50	2.9	161
161	3D-printed Bioresorbable Scaffold for Periodontal Repair. <i>Journal of Dental Research</i> , 2015 , 94, 153S-7S	8.1	159
160	Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces. <i>Biomaterials</i> , 2010 , 31, 5945-52	15.6	150
159	The interaction between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds. <i>Biomaterials</i> , 2009 , 30, 4063-9	15.6	147
158	Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process. <i>Journal of Biomedical Materials Research - Part A</i> , 2007 , 83, 272-9	5.4	142
157	Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 94, 9-18	5.4	139
156	Scaffold translation: barriers between concept and clinic. <i>Tissue Engineering - Part B: Reviews</i> , 2011 , 17, 459-74	7.9	137
155	The accuracy of digital image-based finite element models. <i>Journal of Biomechanical Engineering</i> , 1998 , 120, 289-95	2.1	136
154	Regulatory Considerations in the Design and Manufacturing of Implantable 3D-Printed Medical Devices. <i>Clinical and Translational Science</i> , 2015 , 8, 594-600	4.9	133
153	Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models. <i>Journal of Biomechanical Engineering</i> , 2001 , 123, 403-9	2.1	128
152	Application of homogenization theory to the study of trabecular bone mechanics. <i>Journal of Biomechanics</i> , 1991 , 24, 825-39	2.9	123
151	Additive manufacturing of polymer melts for implantable medical devices and scaffolds. <i>Biofabrication</i> , 2017 , 9, 012002	10.5	119
150	Permeability analysis of scaffolds for bone tissue engineering. <i>Journal of Biomechanics</i> , 2012 , 45, 938-44	l2.9	116
149	Effect of polycaprolactone scaffold permeability on bone regeneration in vivo. <i>Tissue Engineering - Part A</i> , 2011 , 17, 1831-9	3.9	115

148	Inclusion of organ deformation in dose calculations. <i>Medical Physics</i> , 2003 , 30, 290-5	4.4	113
147	Osteocyte lacuna size and shape in women with and without osteoporotic fracture. <i>Journal of Biomechanics</i> , 2004 , 37, 563-72	2.9	106
146	Non-invasive monitoring of tissue scaffold degradation using ultrasound elasticity imaging. <i>Acta Biomaterialia</i> , 2008 , 4, 783-90	10.8	103
145	Tissue-engineered cartilage constructs using composite hyaluronic acid/collagen I hydrogels and designed poly(propylene fumarate) scaffolds. <i>Tissue Engineering</i> , 2007 , 13, 537-50		100
144	Controlled nucleation of hydroxyapatite on alginate scaffolds for stem cell-based bone tissue engineering. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 95, 222-34	5.4	99
143	Selective Laser Sintering Process Optimization for Layered Manufacturing of CAPA 6501 Polycaprolactone Bone Tissue Engineering Scaffolds. <i>Journal of Manufacturing Science and Engineering, Transactions of the ASME</i> , 2006 , 128, 531-540	3.3	99
142	A comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes. <i>Biomaterials</i> , 2010 , 31, 4304-12	15.6	97
141	From structure to process, from organ to cell: recent developments of FE-analysis in orthopaedic biomechanics. <i>Journal of Biomechanical Engineering</i> , 1993 , 115, 520-7	2.1	97
140	Optimization of scaffold design for bone tissue engineering: A computational and experimental study. <i>Medical Engineering and Physics</i> , 2014 , 36, 448-57	2.4	93
139	Tissue engineering osteochondral implants for temporomandibular joint repair. <i>Orthodontics and Craniofacial Research</i> , 2005 , 8, 313-9	3	91
138	Computer aided-designed, 3-dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction. <i>Otolaryngology - Head and Neck Surgery</i> , 2015 , 152, 57-62	5.5	88
137	Differential effects of designed scaffold permeability on chondrogenesis by chondrocytes and bone marrow stromal cells. <i>Biomaterials</i> , 2010 , 31, 279-87	15.6	88
136	Computed tomography-based tissue-engineered scaffolds in craniomaxillofacial surgery. <i>International Journal of Medical Robotics and Computer Assisted Surgery</i> , 2007 , 3, 207-16	2.9	87
135	Computational design of tissue engineering scaffolds. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2007 , 196, 2991-2998	5.7	86
134	Freeform fabrication of Nylon-6 tissue engineering scaffolds. <i>Rapid Prototyping Journal</i> , 2003 , 9, 43-49	3.8	85
133	Delivery and protection of adenoviruses using biocompatible hydrogels for localized gene therapy. <i>Molecular Therapy</i> , 2004 , 9, 130-8	11.7	84
132	Poly(glycerol-dodecanoate), a biodegradable polyester for medical devices and tissue engineering scaffolds. <i>Biomaterials</i> , 2009 , 30, 6479-84	15.6	83
131	Topology Optimization of Three Dimensional Tissue Engineering Scaffold Architectures for Prescribed Bulk Modulus and Diffusivity. <i>Structural and Multidisciplinary Optimization</i> , 2010 , 42, 633-644	1 ^{3.6}	83

(2009-1997)

130	Mechanical stimulation of tissue repair in the hydraulic bone chamber. <i>Journal of Bone and Mineral Research</i> , 1997 , 12, 1295-302	6.3	83
129	Image-based, fiber guiding scaffolds: a platform for regenerating tissue interfaces. <i>Tissue Engineering - Part C: Methods</i> , 2014 , 20, 533-42	2.9	81
128	Combined use of designed scaffolds and adenoviral gene therapy for skeletal tissue engineering. <i>Biomaterials</i> , 2006 , 27, 1160-6	15.6	81
127	Chemically-conjugated bone morphogenetic protein-2 on three-dimensional polycaprolactone scaffolds stimulates osteogenic activity in bone marrow stromal cells. <i>Tissue Engineering - Part A</i> , 2010 , 16, 3441-8	3.9	78
126	A global relationship between trabecular bone morphology and homogenized elastic properties. Journal of Biomechanical Engineering, 1998, 120, 640-6	2.1	77
125	Controllable mineral coatings on PCL scaffolds as carriers for growth factor release. <i>Biomaterials</i> , 2012 , 33, 713-21	15.6	73
124	Macro-architectures in spinal cord scaffold implants influence regeneration. <i>Journal of Neurotrauma</i> , 2008 , 25, 1027-37	5.4	73
123	Treatment of severe porcine tracheomalacia with a 3-dimensionally printed, bioresorbable, external airway splint. <i>JAMA Otolaryngology - Head and Neck Surgery</i> , 2014 , 140, 66-71	3.9	72
122	Developing consistently reproducible intervertebral disc degeneration at rat caudal spine by using needle puncture. <i>Journal of Neurosurgery: Spine</i> , 2009 , 10, 522-30	2.8	71
121	Design control for clinical translation of 3D printed modular scaffolds. <i>Annals of Biomedical Engineering</i> , 2015 , 43, 774-86	4.7	69
120	Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: an in vivo image-based finite element study. <i>Spine</i> , 2009 , 34, 155	4 -60	69
119	Integration of 3D Printed and Micropatterned Polycaprolactone Scaffolds for Guidance of Oriented Collagenous Tissue Formation In Vivo. <i>Advanced Healthcare Materials</i> , 2016 , 5, 676-87	10.1	69
118	Design and Structure-Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1701095	10.1	68
117	Localized viral vector delivery to enhance in situ regenerative gene therapy. <i>Gene Therapy</i> , 2007 , 14, 891-901	4	68
116	Poly(epsilon-caprolactone) and poly (L-lactic-co-glycolic acid) degradable polymer sponges attenuate astrocyte response and lesion growth in acute traumatic brain injury. <i>Tissue Engineering</i> , 2007 , 13, 2515-23		66
115	Interbody fusion cage design using integrated global layout and local microstructure topology optimization. <i>Spine</i> , 2004 , 29, 1747-54	3.3	65
114	Strategies for regeneration of the bone using porcine adult adipose-derived mesenchymal stem cells. <i>Theriogenology</i> , 2011 , 75, 1381-99	2.8	64
113	Tissue formation and vascularization in anatomically shaped human joint condyle ectopically in vivo. <i>Tissue Engineering - Part A</i> , 2009 , 15, 3923-30	3.9	62

112	Scaffold engineering: a bridge to where?. <i>Biofabrication</i> , 2009 , 1, 012001	10.5	60
111	Technical note: creating a four-dimensional model of the liver using finite element analysis. <i>Medical Physics</i> , 2002 , 29, 1403-5	4.4	59
110	Anatomic considerations of transclavicular-transcoracoid drilling for coracoclavicular ligament reconstruction. <i>Journal of Shoulder and Elbow Surgery</i> , 2013 , 22, 137-44	4.3	55
109	Comparison of bone marrow stromal cell behaviors on poly(caprolactone) with or without surface modification: studies on cell adhesion, survival and proliferation. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2009 , 20, 1975-93	3.5	51
108	Bioresorbable scaffolds for bone tissue engineering: optimal design, fabrication, mechanical testing and scale-size effects analysis. <i>Medical Engineering and Physics</i> , 2015 , 37, 287-96	2.4	50
107	Intradiscal injection of simvastatin retards progression of intervertebral disc degeneration induced by stab injury. <i>Arthritis Research and Therapy</i> , 2009 , 11, R172	5.7	48
106	Image-based biomimetic approach to reconstruction of the temporomandibular joint. <i>Cells Tissues Organs</i> , 2001 , 169, 309-21	2.1	48
105	Manufacturing and characterization of 3-d hydroxyapatite bone tissue engineering scaffolds. <i>Annals of the New York Academy of Sciences</i> , 2002 , 961, 114-7	6.5	47
104	Strut size and surface area effects on long-term in vivo degradation in computer designed poly(L-lactic acid) three-dimensional porous scaffolds. <i>Acta Biomaterialia</i> , 2012 , 8, 2568-77	10.8	46
103	Functional bone engineering using ex vivo gene therapy and topology-optimized, biodegradable polymer composite scaffolds. <i>Tissue Engineering</i> , 2005 , 11, 1589-98		46
102	Controlled multiple growth factor delivery from bone tissue engineering scaffolds via designed affinity. <i>Tissue Engineering - Part A</i> , 2014 , 20, 2077-87	3.9	45
101	Porous biodegradable lumbar interbody fusion cage design and fabrication using integrated global-local topology optimization with laser sintering. <i>Journal of Biomechanical Engineering</i> , 2013 , 135, 101013-8	2.1	45
100	Three-dimensional poly(1,8-octanediol-co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes. <i>Acta Biomaterialia</i> , 2011 , 7, 505-14	10.8	45
99	Effects of designed PLLA and 50:50 PLGA scaffold architectures on bone formation in vivo. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2013 , 7, 99-111	4.4	41
98	Mechanical and biochemical assessments of three-dimensional poly(1,8-octanediol-co-citrate) scaffold pore shape and permeability effects on in vitro chondrogenesis using primary chondrocytes. <i>Tissue Engineering - Part A</i> , 2010 , 16, 3759-68	3.9	41
97	Brain cortex regeneration affected by scaffold architectures. <i>Journal of Neurosurgery</i> , 2008 , 109, 715-2	23.2	39
96	Integrating Image-Based Design and 3D Biomaterial Printing to create Patient Specific Devices within a Design Control Framework for Clinical Translation. <i>ACS Biomaterials Science and Engineering</i> , 2016 , 2, 1827-1836	5.5	38
95	Time course investigation of intervertebral disc degeneration produced by needle-stab injury of the rat caudal spine: laboratory investigation. <i>Journal of Neurosurgery: Spine</i> , 2011 , 15, 404-13	2.8	38

(2014-2010)

94	Experimental and computational characterization of designed and fabricated 50:50 PLGA porous scaffolds for human trabecular bone applications. <i>Journal of Materials Science: Materials in Medicine</i> , 2010 , 21, 2371-83	4.5	38	
93	3D-printed, externally-implanted, bioresorbable airway splints for severe tracheobronchomalacia. <i>Laryngoscope</i> , 2019 , 129, 1763-1771	3.6	37	
92	Analysis of load sharing on uncovertebral and facet joints at the C5-6 level with implantation of the Bryan, Prestige LP, or ProDisc-C cervical disc prosthesis: an in vivo image-based finite element study. <i>Neurosurgical Focus</i> , 2010 , 28, E9	4.2	37	
91	The use of reactive polymer coatings to facilitate gene delivery from poly (epsilon-caprolactone) scaffolds. <i>Biomaterials</i> , 2009 , 30, 5785-92	15.6	35	
90	Strain Concentrations Surrounding an Ellipsoid Model of Lacunae and Osteocytes. <i>Computer Methods in Biomechanics and Biomedical Engineering</i> , 1997 , 1, 61-68	2.1	35	
89	Quantitative molecular sensing in biological tissues: an approach to non-invasive optical characterization. <i>Optics Express</i> , 2006 , 14, 6157-71	3.3	35	
88	Are regional variations in bone growth related to mechanical stress and strain parameters?. <i>Journal of Biomechanics</i> , 1998 , 31, 327-35	2.9	34	
87	Three-dimensional polycaprolactone scaffold-conjugated bone morphogenetic protein-2 promotes cartilage regeneration from primary chondrocytes in vitro and in vivo without accelerated endochondral ossification. <i>Journal of Biomedical Materials Research - Part A</i> , 2012 , 100, 2088-96	5.4	33	
86	Digital-image-based finite element analysis for bone microstructure using conjugate gradient and Gaussian filter techniques 1993 ,		33	
85	Bone Morphogenetic Protein-2 Adsorption onto Poly-e-caprolactone Better Preserves Bioactivity In Vitro and Produces More Bone In Vivo than Conjugation Under Clinically Relevant Loading Scenarios. <i>Tissue Engineering - Part C: Methods</i> , 2015 , 21, 489-98	2.9	32	
84	Antenatal Three-Dimensional Printing of Aberrant Facial Anatomy. <i>Pediatrics</i> , 2015 , 136, e1382-5	7.4	31	
83	Evaluation of multi-scale mineralized collagen-polycaprolactone composites for bone tissue engineering. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2016 , 61, 318-327	4.1	30	
82	Mechanical characterization and non-linear elastic modeling of poly(glycerol sebacate) for soft tissue engineering. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2012 , 11, 3-15	4.1	29	
81	Inorganic coatings for optimized non-viral transfection of stem cells. Scientific Reports, 2013, 3, 1567	4.9	29	
80	Relative effects of wound healing and mechanical stimulus on early bone response to porous-coated implants. <i>Journal of Orthopaedic Research</i> , 1996 , 14, 654-62	3.8	29	
79	Dual Delivery of EPO and BMP2 from a Novel Modular Poly-e-Caprolactone Construct to Increase the Bone Formation in Prefabricated Bone Flaps. <i>Tissue Engineering - Part C: Methods</i> , 2015 , 21, 889-97	2.9	28	
78	Stress-related molar responses to the transpalatal arch: a finite element analysis. <i>American Journal of Orthodontics and Dentofacial Orthopedics</i> , 1997 , 112, 512-8	2.1	28	
77	Comparison of reconstructive procedures for glenoid bone loss associated with recurrent anterior shoulder instability. <i>Journal of Shoulder and Elbow Surgery</i> , 2014 , 23, 1113-9	4.3	27	

76	Advances in 3-Dimensional Printing in Otolaryngology: A Review. <i>JAMA Otolaryngology - Head and Neck Surgery</i> , 2017 , 143, 178-183	3.9	27
75	Biomechanical evaluation of human and porcine auricular cartilage. <i>Laryngoscope</i> , 2015 , 125, E262-8	3.6	27
74	A paradigm for the development and evaluation of novel implant topologies for bone fixation: implant design and fabrication. <i>Journal of Biomechanics</i> , 2012 , 45, 2241-7	2.9	26
73	Co-culture of adipose-derived stem cells and chondrocytes on three-dimensionally printed bioscaffolds for craniofacial cartilage engineering. <i>Laryngoscope</i> , 2018 , 128, E251-E257	3.6	25
72	Mechanical, permeability, and degradation properties of 3D designed poly(1,8 octanediol-co-citrate) scaffolds for soft tissue engineering. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2010 , 93, 141-9	3.5	23
71	Tissue-engineered heart valve prostheses: Thate of the heart Tregenerative Medicine, 2008, 3, 399-419	2.5	22
70	Do bone ingrowth processes produce a globally optimized structure?. <i>Journal of Biomechanics</i> , 1993 , 26, 391-407	2.9	22
69	Auricular reconstruction from rib to 3D printing. <i>Journal of 3D Printing in Medicine</i> , 2018 , 2, 35-41	1.5	20
68	Tissue Engineering and 3-Dimensional Modeling for Facial Reconstruction. <i>Facial Plastic Surgery Clinics of North America</i> , 2019 , 27, 151-161	2.4	20
67	Treatment of Severe Acquired Tracheomalacia With a Patient-Specific, 3D-Printed, Permanent Tracheal Splint. <i>JAMA Otolaryngology - Head and Neck Surgery</i> , 2017 , 143, 523-525	3.9	19
66	Biomineral coating increases bone formation by ex vivo BMP-7 gene therapy in rapid prototyped poly(L-lactic acid) (PLLA) and poly(Etaprolactone) (PCL) porous scaffolds. <i>Advanced Healthcare Materials</i> , 2015 , 4, 621-32	10.1	19
65	Designing Biodegradable Shape Memory Polymers for Tissue Repair. <i>Advanced Functional Materials</i> , 2020 , 30, 2002014	15.6	19
64	Pore architecture effects on chondrogenic potential of patient-specific 3-dimensionally printed porous tissue bioscaffolds for auricular tissue engineering. <i>International Journal of Pediatric Otorhinolaryngology</i> , 2018 , 114, 170-174	1.7	17
63	Static and dynamic fatigue behavior of topology designed and conventional 3D printed bioresorbable PCL cervical interbody fusion devices. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2015 , 49, 332-42	4.1	16
62	Tissue Engineering of TMJ and Bone: Concept to Clinic Approach. <i>Journal of Oral and Maxillofacial Surgery</i> , 2008 , 66, 7-8	1.8	16
61	Tissue engineering of the synovial joint: the role of cell density. <i>Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine</i> , 2007 , 221, 429-40	1.7	15
60	Tailoring the physicochemical and shape memory properties of the biodegradable polymer poly(glycerol dodecanoate) via curing conditions. <i>Journal of Biomedical Materials Research - Part A</i> , 2017 , 105, 1618-1623	5.4	14
59	Wireless sensor enables longitudinal monitoring of regenerative niche mechanics during rehabilitation that enhance bone repair. <i>Bone</i> , 2020 , 135, 115311	4.7	13

(2011-2018)

58	A Mineralized Collagen-Polycaprolactone Composite Promotes Healing of a Porcine Mandibular Defect. <i>Tissue Engineering - Part A</i> , 2018 , 24, 943-954	3.9	12
57	A paradigm for the development and evaluation of novel implant topologies for bone fixation: in vivo evaluation. <i>Journal of Biomechanics</i> , 2012 , 45, 2651-7	2.9	11
56	Use of micro-computed tomography to nondestructively characterize biomineral coatings on solid freeform fabricated poly (L-lactic acid) and poly ((Etaprolactone) scaffolds in vitro and in vivo. Tissue Engineering - Part C: Methods, 2013, 19, 507-17	2.9	10
55	Computational modeling of airway instability and collapse in tracheomalacia. <i>Respiratory Research</i> , 2017 , 18, 62	7.3	9
54	Mandibular reconstruction with a bioactive-coated cementless Ti6Al4V modular endoprosthesis in Macaca fascicularis. <i>International Journal of Oral and Maxillofacial Surgery</i> , 2014 , 43, 758-68	2.9	9
53	Acoustic microscopy analyses to determine good vs. failed tissue engineered oral mucosa under normal or thermally stressed culture conditions. <i>Annals of Biomedical Engineering</i> , 2011 , 39, 44-52	4.7	9
52	Defining Design Targets for Tissue Engineering Scaffolds 2009 , 521-537		9
51	Comparison of scanning acoustic microscopy and histology images in characterizing surface irregularities among engineered human oral mucosal tissues. <i>Ultrasound in Medicine and Biology</i> , 2011 , 37, 1734-42	3.5	8
50	Hierarchical bioactive materials for tissue reconstruction: Integrated design and manufacturing challenges. <i>Jom</i> , 2011 , 63, 56-65	2.1	8
49	Effective anisotropic elastic constants of bimaterial interphases: comparison between experimental and analytical techniques. <i>Journal of Materials Science: Materials in Medicine</i> , 1996 , 7, 109-	·415	8
	Characterizing morphology and nonlinear elastic properties of normal and thermally stressed		
48	engineered oral mucosal tissues using scanning acoustic microscopy. <i>Tissue Engineering - Part C:</i> Methods, 2013 , 19, 345-51	2.9	7
48	engineered oral mucosal tissues using scanning acoustic microscopy. Tissue Engineering - Part C:	2.9	7
	engineered oral mucosal tissues using scanning acoustic microscopy. <i>Tissue Engineering - Part C: Methods</i> , 2013 , 19, 345-51 Computational Design, Freeform Fabrication and Testing of Nylon-6 Tissue Engineering Scaffolds.	2.9	,
47	engineered oral mucosal tissues using scanning acoustic microscopy. <i>Tissue Engineering - Part C: Methods</i> , 2013 , 19, 345-51 Computational Design, Freeform Fabrication and Testing of Nylon-6 Tissue Engineering Scaffolds. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 758, 571 Regulatory interfaces surrounding the growing field of additive manufacturing of medical devices		7
47	engineered oral mucosal tissues using scanning acoustic microscopy. <i>Tissue Engineering - Part C: Methods</i> , 2013 , 19, 345-51 Computational Design, Freeform Fabrication and Testing of Nylon-6 Tissue Engineering Scaffolds. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 758, 571 Regulatory interfaces surrounding the growing field of additive manufacturing of medical devices and biologic products. <i>Journal of Clinical and Translational Science</i> , 2018 , 2, 301-304 Degradation properties of a biodegradable shape memory elastomer, poly(glycerol dodecanoate),	0.4	7
47 46 45	engineered oral mucosal tissues using scanning acoustic microscopy. <i>Tissue Engineering - Part C: Methods</i> , 2013 , 19, 345-51 Computational Design, Freeform Fabrication and Testing of Nylon-6 Tissue Engineering Scaffolds. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 758, 571 Regulatory interfaces surrounding the growing field of additive manufacturing of medical devices and biologic products. <i>Journal of Clinical and Translational Science</i> , 2018 , 2, 301-304 Degradation properties of a biodegradable shape memory elastomer, poly(glycerol dodecanoate), for soft tissue repair. <i>PLoS ONE</i> , 2020 , 15, e0229112 Internal Structure Evaluation of Three-Dimensional Calcium Phosphate Bone Scaffolds: A	0.4	7 7 6
47 46 45 44	engineered oral mucosal tissues using scanning acoustic microscopy. <i>Tissue Engineering - Part C: Methods</i> , 2013 , 19, 345-51 Computational Design, Freeform Fabrication and Testing of Nylon-6 Tissue Engineering Scaffolds. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 758, 571 Regulatory interfaces surrounding the growing field of additive manufacturing of medical devices and biologic products. <i>Journal of Clinical and Translational Science</i> , 2018 , 2, 301-304 Degradation properties of a biodegradable shape memory elastomer, poly(glycerol dodecanoate), for soft tissue repair. <i>PLoS ONE</i> , 2020 , 15, e0229112 Internal Structure Evaluation of Three-Dimensional Calcium Phosphate Bone Scaffolds: A Micro-Computed Tomographic Study. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 3176-3181	0.43.73.8	7 7 6 6

40	3D bioprinting of a trachea-mimetic cellular construct of a clinically relevant size. <i>Biomaterials</i> , 2021 , 279, 121246	15.6	5
39	An analysis of trabecuar bone micro-mechanics using homogenization theory with comparison to experimental results. <i>Journal of Biomechanics</i> , 1989 , 22, 1025	2.9	4
38	Nonlinear Elastic Scaffold Design, Modeling and Fabrication for Soft Tissue Engineering. <i>Computational Methods in Applied Sciences (Springer)</i> , 2011 , 35-53	0.4	3
37	High-resolution ultrasonic monitoring of cellular differentiation in an ex vivo produced oral mucosal equivalent (EVPOME) 2009 ,		3
36	Selective Laser Sintering of Polycaprolactone Bone Tissue Engineering Scaffolds. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 845, 340		3
35	(i) Mechanical factors influencing the outcome of total joint replacement. <i>Orthopaedics and Trauma</i> , 1995 , 9, 2-8		3
34	Evaluation of human nasal cartilage nonlinear and rate dependent mechanical properties. <i>Journal of Biomechanics</i> , 2020 , 100, 109549	2.9	3
33	Computational Design and Simulation of Tissue Engineering Scaffolds 2008 , 113-127		3
32	Non-linear stress-strain measurements of ex vivo produced oral mucosal equivalent (EVPOME) compared to normal oral mucosal and skin tissue. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society Annual</i>	0.9	2
31	International Conference, 2011, 2011, 286-9 Three dimensional elastic modulus reconstruction for non-invasive, quantitative monitoring of tissue scaffold mechanical property changes 2008,		2
30	Predicting trabecular bone strength and micro-strain using homogenization theory. <i>Journal of Biomechanics</i> , 1989 , 22, 1014	2.9	2
29	Repair of critical-size porcine craniofacial bone defects using a collagen-polycaprolactone composite biomaterial. <i>Biofabrication</i> , 2021 , 14,	10.5	2
28	Hybrid Three-Dimensional-Printed Ear Tissue Scaffold With Autologous Cartilage Mitigates Soft Tissue Complications. <i>Laryngoscope</i> , 2021 , 131, 1008-1015	3.6	2
27	5C-2 Non-Invasive Ultrasound Elastic Modulus Estimates on Tissue Scaffold Mechanical Property Change. <i>Proceedings IEEE Ultrasonics Symposium</i> , 2007 ,		1
26	Normal and reconstructed mandibular condyle mechanics. <i>Journal of Mechanical Science and Technology</i> , 2001 , 15, 974-981		1
25	Reverse Engineering of Geometrically Complex Automotive Structures Using X-Ray Computed Tomography and Digital Image Based Finite Element Methods 1998 ,		1
24	3D Printing of Thermoplastics with Higher Strength Using SWIR-Supercontinuum Laser 2016,		1
23	Biomechanics of Osteo-Synthetics 2020 , 397-425		1

(2018-2020)

22	Modulating nonlinear elastic behavior of biodegradable shape memory elastomer and small intestinal submucosa(SIS) composites for soft tissue repair. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2020 , 110, 103965	4.1	1
21	Evaluating Directional Dependency of Selective Laser Sintered Patient Specific Biodegradable Devices to Improve Predictive Modeling and Design Verification. <i>Annals of Biomedical Engineering</i> , 2021 , 49, 2579-2589	4.7	1
20	Quality Control of 3D Printed Resorbable Implants: The 3D Printed Airway Splint Example 2018 , 131-16	50	1
19	Development of Photocrosslinked Poly(glycerol dodecanedioate) Biodegradable Shape Memory Polymer for 3D-Printed Tissue Engineering Applications. <i>Advanced Engineering Materials</i> , 2021 , 23, 2100219	3.5	1
18	Anatomic-Based Design, Manufacturing, and Preclinical Assessment of a Novel 3D-Printed Bioscaffold for Total Nasal Reconstruction. <i>Facial Plastic Surgery and Aesthetic Medicine</i> , 2020 , 22, 486-	4 8 8 ⁴	O
17	Finite Strain Elastostatics With Stiffening Materials: A Constrained Minimization Model. <i>Journal of Applied Mechanics, Transactions ASME</i> , 1997 , 64, 440-442	2.7	Ο
16	Preclinical assessment of clinically streamlined, 3D-printed, biocompatible single- and two-stage tissue scaffolds for ear reconstruction. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2021 , 109, 394-400	3.5	О
15	Tracheal agenesis: Esophageal airway support with a 3-dimensional-printed bioresorbable splint <i>JTCVS Techniques</i> , 2021 , 10, 563-568	0.2	O
14	Early preclinical evaluation of a novel, computer aided designed, 3D printed, bioresorbable posterior cricoid scaffold. <i>International Journal of Pediatric Otorhinolaryngology</i> , 2021 , 150, 110892	1.7	O
13	Design and Quality Control for Translating 3D-Printed Scaffolds 2015 , 43-59		
12	High-frequency ultrasonic imaging of growth and development in manufactured engineered oral mucosal tissue surfaces. <i>Ultrasound in Medicine and Biology</i> , 2014 , 40, 2244-51	3.5	
11	Engineered Scaffold Architecture Influences Soft Tissue Regeneration 2008 , 67-78		
10	Noninvasive, quantitative fluorescence sensing in 3D tissues: an approach to in vivo molecular characterization of engineered tissue constructs 2006 , ME59		
9	Fabrication of Polycaprolactone Bone Tissue Engineering Scaffolds Using Selective Laser Sintering 2004 , 525		
8	Image-based Hierarchical Analysis and Design of Tissue Engineering Scaffolds 2006 , 503-515		
7			
7	Design and Fabrication of Bone Tissue Engineering Scaffolds 2004 , 167-192		
6	Design and Fabrication of Bone Tissue Engineering Scaffolds 2004 , 167-192 In situ Transduction by Virus Localization on Bioengineering Scaffolds for Bone Regeneration. <i>FASEB Journal</i> , 2007 , 21, A134	0.9	

4	SU-FF-J-137: Rapid Prototyping of Vascular Trees for Quality Assurance of Dynamic Contrast Enhanced Perfusion Imaging and Analysis. <i>Medical Physics</i> , 2009 , 36, 2508-2508	4.4
3	SU-C-218-05: A CFD-Based Approach to Validating Flow in a Prototype Dynamic Perfusion Phantom for Dynamic Contrast Fnhanced (DCE) Imaging. <i>Medical Physics</i> , 2012 , 39, 3609-3609	4.4
2	Tissue-engineered vascularized patient-specific temporomandibular joint reconstruction in a Yucatan pig model. <i>Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology</i> , 2021 , 132, 145-152	2
1	Design and fabrication of scaffolds for anatomic bone reconstruction. <i>Medical Journal of Malaysia</i> , 2004 , 59 Suppl B, 131-2	0.4