Jeremy A Lynch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1257082/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression and Function of Toll Pathway Components in the Early Development of the Wasp Nasonia vitripennis. Journal of Developmental Biology, 2022, 10, 7.	1.7	1
2	Evolution of germ plasm assembly and function among the insects. Current Opinion in Insect Science, 2022, 50, 100883.	4.4	3
3	Dnmt1a is essential for gene body methylation and the regulation of the zygotic genome in a wasp. PLoS Genetics, 2022, 18, e1010181.	3.5	13
4	Striking parallels between dorsoventral patterning in Drosophila and Gryllus reveal a complex evolutionary history behind a model gene regulatory network. ELife, 2021, 10, .	6.0	20
5	Genetic, morphometric, and molecular analyses of interspecies differences in head shape and hybrid developmental defects in the wasp genus <i>Nasonia</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	2
6	Genome Report: Whole Genome Sequence and Annotation of the Parasitoid Jewel Wasp <i>Nasonia giraulti</i> Laboratory Strain RV2X[u]. G3: Genes, Genomes, Genetics, 2020, 10, 2565-2572.	1.8	12
7	Evolution of maternal control of axial patterning in insects. Current Opinion in Insect Science, 2019, 31, 37-42.	4.4	2
8	Transcriptomic and functional analysis of the oosome, a unique form of germ plasm in the wasp Nasonia vitripennis. BMC Biology, 2019, 17, 78.	3.8	7
9	Fog signaling has diverse roles in epithelial morphogenesis in insects. ELife, 2019, 8, .	6.0	20
10	Ankyrin domain encoding genes from an ancient horizontal transfer are functionally integrated into Nasonia developmental gene regulatory networks. Genome Biology, 2018, 19, 148.	8.8	9
11	Ploidy has little effect on timing early embryonic events in the haploâ€diploid wasp <i>Nasonia</i> . Genesis, 2017, 55, e23029.	1.6	9
12	Establishment of F1 hybrid mortality in real time. BMC Evolutionary Biology, 2017, 17, 37.	3.2	3
13	Global analysis of dorsoventral patterning in the wasp Nasonia reveals extensive incorporation of novelty in a regulatory network. BMC Biology, 2016, 14, 63.	3.8	13
14	The evolution of insect germline specification strategies. Current Opinion in Insect Science, 2016, 13, 99-105.	4.4	14
15	Emerging developmental genetic model systems in holometabolous insects. Current Opinion in Genetics and Development, 2016, 39, 116-128.	3.3	20
16	Dissection of the complex genetic basis of craniofacial anomalies using haploid genetics and interspecies hybrids in Nasonia wasps. Developmental Biology, 2016, 415, 391-405.	2.0	11
17	Deep, Staged Transcriptomic Resources for the Novel Coleopteran Models Atrachya menetriesi and Callosobruchus maculatus. PLoS ONE, 2016, 11, e0167431.	2.5	7
18	The Expanding Genetic Toolbox of the Wasp <i>Nasonia vitripennis</i> and Its Relatives. Genetics, 2015, 199, 897-904.	2.9	49

JEREMY A LYNCH

#	Article	IF	CITATIONS
19	Dynamic BMP signaling polarized by Toll patterns the dorsoventral axis in a hemimetabolous insect. ELife, 2015, 4, e05502.	6.0	40
20	Dorsoventral Polarity of the Nasonia Embryo Primarily Relies on a BMP Gradient Formed without Input from Toll. Current Biology, 2014, 24, 2393-2398.	3.9	38
21	Ancient and diverged TCF-β signaling components in Nasonia vitripennis. Development Genes and Evolution, 2014, 224, 223-233.	0.9	20
22	Diversity of molecules and mechanisms in establishing insect anterior–posterior polarity. Current Opinion in Insect Science, 2014, 1, 39-44.	4.4	8
23	Patterning the dorsal–ventral axis of the wasp Nasonia vitripennis. Developmental Biology, 2013, 381, 189-202.	2.0	36
24	A New Component of the Nasonia Sex Determining Cascade Is Maternally Silenced and Regulates Transformer Expression. PLoS ONE, 2013, 8, e63618.	2.5	45
25	Axis Formation: Microtubules Push in the Right Direction. Current Biology, 2012, 22, R537-R539.	3.9	2
26	Does the Bicoid Gradient Matter?. Cell, 2012, 149, 511-512.	28.9	11
27	Comparisons of the embryonic development of <i>Drosophila</i> , <i>Nasonia</i> , and <i>Tribolium</i> . Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 16-39.	5.9	81
28	The evolution of dorsal–ventral patterning mechanisms in insects. Genes and Development, 2011, 25, 107-118.	5.9	98
29	The Phylogenetic Origin of oskar Coincided with the Origin of Maternally Provisioned Germ Plasm and Pole Cells at the Base of the Holometabola. PLoS Genetics, 2011, 7, e1002029.	3.5	71
30	EGF Signaling and the Origin of Axial Polarity among the Insects. Current Biology, 2010, 20, 1042-1047.	3.9	70
31	Novel modes of localization and function of nanos in the wasp Nasonia. Development (Cambridge), 2010, 137, 3813-3821.	2.5	33
32	Functional and Evolutionary Insights from the Genomes of Three Parasitoid <i>Nasonia</i> Species. Science, 2010, 327, 343-348.	12.6	808
33	Symmetry Breaking During Drosophila Oogenesis. Cold Spring Harbor Perspectives in Biology, 2009, 1, a001891-a001891.	5.5	141
34	Heads and tails: Evolution of antero-posterior patterning in insects. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 333-342.	1.9	54
35	Evolution of axis formation: mRNA localization, regulatory circuits and posterior specification in non-model arthropods. Current Opinion in Genetics and Development, 2009, 19, 404-411.	3.3	20
36	The genome of the model beetle and pest Tribolium castaneum. Nature, 2008, 452, 949-955.	27.8	1,255

JEREMY A LYNCH

#	Article	IF	CITATIONS
37	A method for parental RNA interference in the wasp Nasonia vitripennis. Nature Protocols, 2006, 1, 486-494.	12.0	146
38	Localized maternal orthodenticle patterns anterior and posterior in the long germ wasp Nasonia. Nature, 2006, 439, 728-732.	27.8	180
39	Regulation and function of tailless in the long germ wasp Nasonia vitripennis. Development Genes and Evolution, 2006, 216, 493-498.	0.9	64
40	A major role for zygotic hunchback in patterning the Nasonia embryo. Development (Cambridge), 2005, 132, 3705-3715.	2.5	83
41	Evolution of Development: Beyond Bicoid. Current Biology, 2003, 13, R557-R559.	3.9	31
42	'De-evolution' of Drosophila toward a more generic mode of axis patterning. International Journal of Developmental Biology, 2003, 47, 497-503.	0.6	18