Moshawe Madito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1256653/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Asymmetric supercapacitor based on VS ₂ nanosheets and activated carbon materials. RSC Advances, 2016, 6, 38990-39000.	3.6	109
2	Hydrothermal synthesis of manganese phosphate/graphene foam composite for electrochemical supercapacitor applications. Journal of Colloid and Interface Science, 2017, 494, 325-337.	9.4	98
3	High performance asymmetric supercapacitor based on molybdenum disulphide/graphene foam and activated carbon from expanded graphite. Journal of Colloid and Interface Science, 2017, 488, 155-165.	9.4	97
4	A high energy density asymmetric supercapacitor utilizing a nickel phosphate/graphene foam composite as the cathode and carbonized iron cations adsorbed onto polyaniline as the anode. RSC Advances, 2018, 8, 11608-11621.	3.6	90
5	Preparation and characterization of porous carbon from expanded graphite for high energy density supercapacitor in aqueous electrolyte. Journal of Power Sources, 2016, 309, 245-253.	7.8	85
6	Activated carbon derived from tree bark biomass with promising material properties for supercapacitors. Journal of Solid State Electrochemistry, 2017, 21, 859-872.	2.5	84
7	Effect of porosity enhancing agents on the electrochemical performance of high-energy ultracapacitor electrodes derived from peanut shell waste. Scientific Reports, 2019, 9, 13673.	3.3	80
8	Synthesis and characterization of porous carbon derived from activated banana peels with hierarchical porosity for improved electrochemical performance. Electrochimica Acta, 2018, 262, 187-196.	5.2	76
9	High performance asymmetric supercapacitor based on CoAl-LDH/GF and activated carbon from expanded graphite. RSC Advances, 2016, 6, 46723-46732.	3.6	70
10	Asymmetric supercapacitor based on vanadium disulfide nanosheets as a cathode and carbonized iron cations adsorbed onto polyaniline as an anode. Electrochimica Acta, 2018, 260, 11-23.	5.2	68
11	Synthesis of ternary NiCo-MnO2 nanocomposite and its application as a novel high energy supercapattery device. Chemical Engineering Journal, 2018, 335, 416-433.	12.7	64
12	Asymmetric supercapacitor based on an α-MoO ₃ cathode and porous activated carbon anode materials. RSC Advances, 2015, 5, 37462-37468.	3.6	59
13	Stability studies of polypyrole- derived carbon based symmetric supercapacitor via potentiostatic floating test. Electrochimica Acta, 2016, 213, 107-114.	5.2	56
14	High performance hybrid supercapacitor device based on cobalt manganese layered double hydroxide and activated carbon derived from cork (Quercus Suber). Electrochimica Acta, 2017, 252, 41-54.	5.2	54
15	Symmetric supercapacitor with supercapattery behavior based on carbonized iron cations adsorbed onto polyaniline. Electrochimica Acta, 2018, 262, 82-96.	5.2	52
16	High electrochemical performance of hierarchical porous activated carbon derived from lightweight cork (Quercus suber). Journal of Materials Science, 2017, 52, 10600-10613.	3.7	47
17	Three dimensional vanadium pentoxide/graphene foam composite as positive electrode for high performance asymmetric electrochemical supercapacitor. Journal of Colloid and Interface Science, 2018, 532, 395-406.	9.4	44
18	Solvothermal synthesis of surfactant free spherical nickel hydroxide/graphene oxide composite for supercapacitor application. Journal of Alloys and Compounds, 2017, 721, 80-91.	5.5	42

Moshawe Madito

#	Article	IF	CITATIONS
19	Simonkolleite-graphene foam composites and their superior electrochemical performance. Electrochimica Acta, 2015, 151, 591-598.	5.2	40
20	Preparation and electrochemical investigation of the cobalt hydroxide carbonate/activated carbon nanocomposite for supercapacitor applications. Journal of Physics and Chemistry of Solids, 2016, 88, 60-67.	4.0	37
21	A facile hydrothermal reflux synthesis of Ni(OH)2/GF electrode for supercapacitor application. Journal of Materials Science, 2016, 51, 6041-6050.	3.7	36
22	High-performance symmetric supercapacitor device based on carbonized iron-polyaniline/nickel graphene foam. Journal of Alloys and Compounds, 2020, 819, 152993.	5.5	36
23	Electrochemical performance of polypyrrole derived porous activated carbon-based symmetric supercapacitors in various electrolytes. RSC Advances, 2016, 6, 68141-68149.	3.6	35
24	Microwave synthesis: Characterization and electrochemical properties of amorphous activated carbon-MnO2 nanocomposite electrodes. Journal of Alloys and Compounds, 2016, 681, 293-300.	5.5	35
25	Investigation of graphene oxide nanogel and carbon nanorods as electrode for electrochemical supercapacitor. Electrochimica Acta, 2017, 245, 268-278.	5.2	32
26	Enhanced electrochemical response of activated carbon nanostructures from tree-bark biomass waste in polymer-gel active electrolytes. RSC Advances, 2017, 7, 37286-37295.	3.6	31
27	A systematic study of the stability, electronic and optical properties of beryllium and nitrogen co-doped graphene. Carbon, 2018, 129, 207-227.	10.3	29
28	Influence of K3Fe(CN)6 on the electrochemical performance of carbon derived from waste tyres by K2CO3 activation. Materials Chemistry and Physics, 2018, 209, 262-270.	4.0	26
29	High-performance asymmetric supercapacitor based on vanadium dioxide and carbonized iron-polyaniline electrodes. AIP Advances, 2019, 9, .	1.3	26
30	High electrochemical performance of hybrid cobalt oxyhydroxide/nickel foam graphene. Journal of Colloid and Interface Science, 2016, 484, 77-85.	9.4	25
31	Effect of growth time on solvothermal synthesis of vanadium dioxide for electrochemical supercapacitor application. Materials Chemistry and Physics, 2018, 214, 192-200.	4.0	25
32	Remarkable thermal conductivity enhancement in Ag—decorated graphene nanocomposites based nanofluid by laser liquid solid interaction in ethylene glycol. Scientific Reports, 2020, 10, 10982.	3.3	25
33	Effect of growth time of hydrothermally grown cobalt hydroxide carbonate on its supercapacitive performance. Journal of Physics and Chemistry of Solids, 2016, 94, 17-24.	4.0	23
34	Electrochemical performance of hybrid supercapacitor device based on birnessite-type manganese oxide decorated on uncapped carbon nanotubes and porous activated carbon nanostructures. Electrochimica Acta, 2018, 289, 363-375.	5.2	23
35	Nickel-copper graphene foam prepared by atmospheric pressure chemical vapour deposition for supercapacitor applications. Surface and Coatings Technology, 2020, 383, 125230.	4.8	22
36	Thermal conductivity enhancement in gold decorated graphene nanosheets in ethylene glycol based nanofluid. Scientific Reports, 2020, 10, 14730.	3.3	22

Moshawe Madito

#	Article	IF	CITATIONS
37	Gas sensing study of hydrothermal reflux synthesized NiO/graphene foam electrode for CO sensing. Journal of Materials Science, 2017, 52, 2035-2044.	3.7	20
38	Nanostructured porous carbons with high rate cycling and floating performance for supercapacitor application. AIP Advances, 2018, 8, .	1.3	20
39	Exploring the stability and electronic structure of beryllium and sulphur co-doped graphene: a first principles study. RSC Advances, 2016, 6, 88392-88402.	3.6	19
40	Effect of activated carbon on the enhancement of CO sensing performance of NiO. Journal of Alloys and Compounds, 2017, 694, 155-162.	5.5	19
41	Mixed-acid intercalation for synthesis of a high conductivity electrochemically exfoliated graphene. Carbon, 2021, 171, 130-141.	10.3	19
42	Hybrid electrochemical supercapacitor based on birnessite-type MnO2/carbon composite as the positive electrode and carbonized iron-polyaniline/nickel graphene foam as a negative electrode. AIP Advances, 2020, 10, .	1.3	16
43	Raman analysis of bilayer graphene film prepared on commercial Cu(0.5 at% Ni) foil. Journal of Raman Spectroscopy, 2016, 47, 553-559.	2.5	15
44	Characterization of 167†MeV Xe ion irradiated n-type 4H-SiC. Applied Surface Science, 2019, 493, 1291-1298.	6.1	15
45	Chemical disorder of a-SiC layer induced in 6H-SiC by Cs and I ions co-implantation: Raman spectroscopy analysis. Applied Surface Science, 2021, 538, 148099.	6.1	15
46	Synthesis and optimisation of a novel graphene wool material by atmospheric pressure chemical vapour deposition. Journal of Materials Science, 2020, 55, 545-564.	3.7	14
47	Electrochemical Studies of Microwave Synthesised Bimetallic Sulfides Nanostructures As Faradaic Electrodes Electrochimica Acta, 2015, 174, 778-786.	5.2	12
48	Coating processes towards selective laser sintering of energetic material composites. Defence Technology, 2020, 16, 316-324.	4.2	12
49	Microwave-assisted synthesis of cobalt sulphide nanoparticle clusters on activated graphene foam for electrochemical supercapacitors. RSC Advances, 2017, 7, 20231-20240.	3.6	11
50	The nature of surface defects in Xe ion-implanted glassy carbon annealed at high temperatures: Raman spectroscopy analysis. Applied Surface Science, 2020, 506, 145001.	6.1	10
51	Correlation of the Graphene Fermi-Level Shift and the Enhanced Electrochemical Performance of Graphene-Manganese Phosphate for Hybrid Supercapacitors: Raman Spectroscopy Analysis. ACS Applied Materials & Interfaces, 2021, 13, 37014-37026.	8.0	10
52	Defects in swift heavy ion irradiated n-4H-SiC. Nuclear Instruments & Methods in Physics Research B, 2019, 460, 119-124.	1.4	9
53	A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition. Journal of Applied Physics, 2016, 119, .	2.5	8
54	Slow and swift heavy ions irradiation of zirconium nitride (ZrN) and the migration behaviour of implanted Eu. Nuclear Instruments & Methods in Physics Research B, 2019, 461, 63-69.	1.4	8

MOSHAWE MADITO

#	Article	IF	CITATIONS
55	A wafer-scale Bernal-stacked bilayer graphene film obtained on a dilute Cu (0.61 at% Ni) foil using atmospheric pressure chemical vapour deposition. RSC Advances, 2016, 6, 28370-28378.	3.6	7
56	Raman spectroscopy and imaging of Bernalâ€stacked bilayer graphene synthesized on copper foil by chemical vapour deposition: growth dependence on temperature. Journal of Raman Spectroscopy, 2017, 48, 639-646.	2.5	4
57	Malathion-filled trilayer polyolefin film for malaria vector control. Materials Science and Engineering C, 2019, 96, 419-425.	7.3	4
58	Reduction of recombination rates due to volume increasing, annealing, and tetraethoxysilicate treatment in hematite thin films. Applied Nanoscience (Switzerland), 2020, 10, 1957-1967.	3.1	4
59	Surface segregation measurements of In and S impurities from a dilute Cu(In,S) ternary alloy. Surface and Interface Analysis, 2013, 45, 1020-1025.	1.8	3
60	Floating of PPY Derived Carbon Based Symmetric Supercapacitor in Alkaline Electrolyte. ECS Transactions, 2017, 75, 1-12.	0.5	3
61	Effect of the annealing atmosphere on the layer interdiffusion in Pd/Ti/Pd multilayer stacks deposited on pure Ti and Ti-alloy substrates. Nuclear Instruments & Methods in Physics Research B, 2019, 461, 37-43.	1.4	3
62	The diffusion doping of Cu crystals with 0.1 at.% In at high annealing temperatures for surface segregation measurements. Thin Solid Films, 2013, 542, 186-191.	1.8	2
63	In-situ study of platinum reaction with oxygen contaminated silicon layer. Nuclear Instruments & Methods in Physics Research B, 2020, 467, 27-32.	1.4	1
64	Coating Processes Towards Selective Laser Sintering of Energetic Materials. , 0, , .		0