List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1256465/publications.pdf Version: 2024-02-01



DETD SOSIK

| #  | Article                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | P colonies with agent division. Information Sciences, 2022, 589, 162-169.                                                                             | 4.0 | 1         |
| 2  | A Self-Controlled and Self-Healing Model of Bacterial Cells. Membranes, 2022, 12, 678.                                                                | 1.4 | 2         |
| 3  | Morphogenetic systems for resource bounded computation and modeling. Information Sciences, 2021, 547, 814-827.                                        | 4.0 | 4         |
| 4  | Morphogenetic systems: Models and experiments. BioSystems, 2020, 198, 104270.                                                                         | 0.9 | 4         |
| 5  | From P systems to morphogenetic systems: an overview and open problems. Journal of Membrane<br>Computing, 2020, 2, 380-391.                           | 1.0 | 5         |
| 6  | P systems attacking hard problems beyond NP: a survey. Journal of Membrane Computing, 2019, 1,<br>198-208.                                            | 1.0 | 37        |
| 7  | PÂcolonies. Journal of Membrane Computing, 2019, 1, 178-197.                                                                                          | 1.0 | 15        |
| 8  | Modeling Plant Development with M Systems. Lecture Notes in Computer Science, 2019, , 246-257.                                                        | 1.0 | 1         |
| 9  | Generalized P colonies with passive environment. Theoretical Computer Science, 2018, 724, 61-68.                                                      | 0.5 | 0         |
| 10 | Natural selection in bats with historical exposure to white-nose syndrome. BMC Zoology, 2018, 3, .                                                    | 0.3 | 17        |
| 11 | A Logical Representation of P Colonies: An Introduction. Lecture Notes in Computer Science, 2018, , 66-76.                                            | 1.0 | 1         |
| 12 | On the Robust Power of Morphogenetic Systems for Time Bounded Computation. Lecture Notes in Computer Science, 2018, , 270-292.                        | 1.0 | 5         |
| 13 | Directed evolution of biocircuits using conjugative plasmids and CRISPR-Cas9: design and in silico experiments. Natural Computing, 2017, 16, 497-505. | 1.8 | 4         |
| 14 | P Colonies with Evolving Environment. Lecture Notes in Computer Science, 2017, , 151-164.                                                             | 1.0 | 3         |
| 15 | Small (purely) catalytic P systems simulating register machines. Theoretical Computer Science, 2016, 623, 65-74.                                      | 0.5 | 9         |
| 16 | An Autonomous In Vivo Dual Selection Protocol for Boolean Genetic Circuits. Artificial Life, 2015, 21, 247-260.                                       | 1.0 | 4         |
| 17 | An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Separation. Fundamenta Informaticae, 2015, 138, 45-60.                            | 0.3 | 32        |
| 18 | A limitation of cell division in tissue P systems by PSPACE. Journal of Computer and System Sciences, 2015, 81, 473-484.                              | 0.9 | 8         |

| #  | Article                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Laws of Natural Deduction in Inference by DNA Computer. Scientific World Journal, The, 2014, 2014, 1-10.                                              | 0.8 | 2         |
| 20 | Three Universal Homogeneous Spiking Neural P Systems Using Max Spike. Fundamenta Informaticae, 2014, 134, 167-182.                                        | 0.3 | 1         |
| 21 | Brain clock driven by neuropeptides and second messengers. Physical Review E, 2014, 90, 032705.                                                           | 0.8 | 0         |
| 22 | Computational power of cell separation in tissue P systems. Information Sciences, 2014, 279, 805-815.                                                     | 4.0 | 7         |
| 23 | DNA strand displacement system running logic programs. BioSystems, 2014, 115, 5-12.                                                                       | 0.9 | 4         |
| 24 | Active Membranes, Proteins on Membranes, Tissue P Systems: Complexity-Related Issues and Challenges.<br>Lecture Notes in Computer Science, 2014, , 40-55. | 1.0 | 0         |
| 25 | P systems with proteins on membranes characterize PSPACE. Theoretical Computer Science, 2013, 488, 78-95.                                                 | 0.5 | 17        |
| 26 | Limits of the Power of Tissue P Systems with Cell Division. Lecture Notes in Computer Science, 2013, ,<br>390-403.                                        | 1.0 | 3         |
| 27 | POLYNOMIAL TIME-BOUNDED COMPUTATIONS IN SPIKING NEURAL P SYSTEMS. Neural Network World, 2013, 23, 31-48.                                                  | 0.5 | 1         |
| 28 | DNA Computing $\hat{a} \in \tilde{~}$ Foundations and Implications. , 2012, , 1073-1127.                                                                  |     | 13        |
| 29 | Tissue P Systems with Cell Separation: Upper Bound by PSPACE. Lecture Notes in Computer Science, 2012, , 201-215.                                         | 1.0 | 3         |
| 30 | On the scalability of biocomputing algorithms: The case of the maximum clique problem. Theoretical<br>Computer Science, 2011, 412, 7075-7086.             | 0.5 | 3         |
| 31 | ON THE POWER OF FAMILIES OF RECOGNIZER SPIKING NEURAL <font>P</font> SYSTEMS. International Journal of Foundations of Computer Science, 2011, 22, 75-88.  | 0.8 | 3         |
| 32 | ORTHOGONAL SHUFFLE ON TRAJECTORIES. International Journal of Foundations of Computer Science, 2011, 22, 213-222.                                          | 0.8 | 1         |
| 33 | Autonomous Resolution Based on DNA Strand Displacement. Lecture Notes in Computer Science, 2011, ,<br>190-203.                                            | 1.0 | 4         |
| 34 | On the Power of Computing with Proteins on Membranes. Lecture Notes in Computer Science, 2010, ,<br>448-460.                                              | 1.0 | 4         |
| 35 | Polynomial Complexity Classes in Spiking Neural P Systems. Lecture Notes in Computer Science, 2010, ,<br>348-360.                                         | 1.0 | 2         |
| 36 | The Undecidability of the Infinite Ribbon Problem: Implications for Computing by Self-Assembly. SIAM<br>Journal on Computing, 2009, 38, 2356-2381.        | 0.8 | 19        |

| #  | Article                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | On the power of elementary features in spiking neural P systems. Natural Computing, 2008, 7, 471-483.                                                    | 1.8 | 2         |
| 38 | On the weight of universal insertion grammars. Theoretical Computer Science, 2008, 396, 264-270.                                                         | 0.5 | 15        |
| 39 | Towards a Robust Biocomputing Solution of Intractable Problems. , 2008, , 221-230.                                                                       |     | 0         |
| 40 | ON THE POWER OF DETERMINISTIC AND SEQUENTIAL COMMUNICATING P SYSTEMS. International Journal of Foundations of Computer Science, 2007, 18, 415-431.       | 0.8 | 2         |
| 41 | Normal forms for spiking neural P systems. Theoretical Computer Science, 2007, 372, 196-217.                                                             | 0.5 | 69        |
| 42 | Membrane computing and complexity theory: A characterization of PSPACE. Journal of Computer and System Sciences, 2007, 73, 137-152.                      | 0.9 | 71        |
| 43 | A P system and a constructive membrane-inspired DNA algorithm for solving the Maximum Clique<br>Problem. BioSystems, 2007, 90, 687-697.                  | 0.9 | 9         |
| 44 | Algebraic properties of substitution on trajectories. Theoretical Computer Science, 2006, 369, 183-196.                                                  | 0.5 | 0         |
| 45 | Hairpin Structures in DNA Words. Lecture Notes in Computer Science, 2006, , 158-170.                                                                     | 1.0 | 17        |
| 46 | Computationally universal P systems without priorities: two catalysts are sufficient. Theoretical<br>Computer Science, 2005, 330, 251-266.               | 0.5 | 97        |
| 47 | Aspects of shuffle and deletion on trajectories. Theoretical Computer Science, 2005, 332, 47-61.                                                         | 0.5 | 19        |
| 48 | On properties of bond-free DNA languages. Theoretical Computer Science, 2005, 334, 131-159.                                                              | 0.5 | 23        |
| 49 | On Hairpin-Free Words and Languages. Lecture Notes in Computer Science, 2005, , 296-307.                                                                 | 1.0 | 17        |
| 50 | OPERATIONS ON TRAJECTORIES WITH APPLICATIONS TO CODING AND BIOINFORMATICS. International Journal of Foundations of Computer Science, 2005, 16, 531-546.  | 0.8 | 4         |
| 51 | BOND-FREE LANGUAGES: FORMALIZATIONS, MAXIMALITY AND CONSTRUCTION METHODS. International Journal of Foundations of Computer Science, 2005, 16, 1039-1070. | 0.8 | 12        |
| 52 | Bond-Free Languages: Formalizations, Maximality and Construction Methods. Lecture Notes in Computer Science, 2005, , 169-181.                            | 1.0 | 8         |
| 53 | Substitutions, Trajectories and Noisy Channels. Lecture Notes in Computer Science, 2005, , 202-212.                                                      | 1.0 | 3         |
| 54 | Substitution on Trajectories. Lecture Notes in Computer Science, 2004, , 145-158.                                                                        | 1.0 | 1         |

| #  | Article                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The Power of Catalysts and Priorities in Membrane Systems. Grammars, 2003, 6, 13-24.                                          | 0.4 | 14        |
| 56 | The computational power of cell division in P systems: Beating down parallel computers?. Natural Computing, 2003, 2, 287-298. | 1.8 | 67        |
| 57 | Watson–Crick D0L systems: the power of one transition. Theoretical Computer Science, 2003, 301, 187-200.                      | 0.5 | 11        |
| 58 | Watson–Crick D0L systems: generative power and undecidable problems. Theoretical Computer<br>Science, 2003, 306, 101-112.     | 0.5 | 6         |
| 59 | Universal computation with Watson-Crick DOL systems. Theoretical Computer Science, 2002, 289, 485-501.                        | 0.5 | 5         |
| 60 | Membrane Computing: When Communication Is Enough. Lecture Notes in Computer Science, 2002, ,<br>264-275.                      | 1.0 | 9         |
| 61 | String Rewriting Sequential P-Systems and Regulated Rewriting. Lecture Notes in Computer Science, 2002, , 379-388.            | 1.0 | 1         |
| 62 | DOL System + Watson-Crick Complementarity = Universal Computation. Lecture Notes in Computer Science, 2001, , 308-319.        | 1.0 | 8         |
| 63 | Conditional Tabled Eco-Grammar Systems: the Scattered Contexts. Grammars, 1999, 2, 235-245.                                   | 0.4 | 1         |
| 64 | On the Hierarchy of Extended Conditional Tabled Eco-Grammar Systems. Grammars, 1999, 1, 225-238.                              | 0.4 | 2         |
| 65 | Self-healing turing-universal computation in morphogenetic systems. Natural Computing, 0, , 1.                                | 1.8 | 2         |
| 66 | DNA Computing and Errors. Advances in Web Services Research Series, 0, , 56-77.                                               | 0.0 | 2         |
| 67 | Morphogenetic computing: computability and complexity results. Natural Computing, 0, , .                                      | 1.8 | 1         |