
Eric Rubinstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1256273/publications.pdf Version: 2024-02-01

FDIC RUBINSTEIN

#	Article	IF	CITATIONS
1	Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nature Communications, 2021, 12, 4389.	5.8	342
2	CD82 and Gangliosides Tune CD81 Membrane Behavior. International Journal of Molecular Sciences, 2021, 22, 8459.	1.8	7
3	Molecular determinants of SR-B1-dependent Plasmodium sporozoite entry into hepatocytes. Scientific Reports, 2020, 10, 13509.	1.6	12
4	Rapid Isolation of Rare Isotype-Switched Hybridoma Variants: Application to the Generation of IgG2a and IgG2b MAb to CD63, a Late Endosome and Exosome Marker. Antibodies, 2020, 9, 29.	1.2	6
5	Tetraspanin-6 negatively regulates exosome production. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5913-5922.	3.3	52
6	The tetraspanin Tspan15 is an essential subunit of an ADAM10 scissor complex. Journal of Biological Chemistry, 2020, 295, 12822-12839.	1.6	31
7	TspanC8 tetraspanins differentially regulate ADAM10 endocytosis and half-life. Life Science Alliance, 2020, 3, e201900444.	1.3	29
8	The tetraspanin CD9 controls migration and proliferation of parietal epithelial cells and glomerular disease progression. Nature Communications, 2019, 10, 3303.	5.8	52
9	TSPAN5 Enriched Microdomains Provide a Platform for Dendritic Spine Maturation through Neuroligin-1 Clustering. Cell Reports, 2019, 29, 1130-1146.e8.	2.9	17
10	Nanoscale organization of tetraspanins during HIV-1 budding by correlative dSTORM/AFM. Nanoscale, 2019, 11, 6036-6044.	2.8	35
11	A Dock-and-Lock Mechanism Clusters ADAM10 at Cell-Cell Junctions to Promote α-Toxin Cytotoxicity. Cell Reports, 2018, 25, 2132-2147.e7.	2.9	40
12	New insights into the tetraspanin Tspan5 using novel monoclonal antibodies. Journal of Biological Chemistry, 2017, 292, 9551-9566.	1.6	26
13	Ligand-activated Notch undergoes DTX4-mediated ubiquitylation and bilateral endocytosis before ADAM10 processing. Science Signaling, 2017, 10, .	1.6	34
14	CD9 Regulates Major Histocompatibility Complex Class II Trafficking in Monocyte-Derived Dendritic Cells. Molecular and Cellular Biology, 2017, 37, .	1.1	29
15	Structural Basis for Regulated Proteolysis by the α-Secretase ADAM10. Cell, 2017, 171, 1638-1648.e7.	13.5	121
16	Regulation of the trafficking and the function of the metalloprotease ADAM10 by tetraspanins. Biochemical Society Transactions, 2017, 45, 937-944.	1.6	44
17	CD81 large extracellular loop-containing fusion proteins with a dominant negative effect on HCV cell spread and replication. Journal of General Virology, 2017, 98, 1646-1657.	1.3	4
18	Tetraspanin 8 (TSPAN 8) as a potential target for radio-immunotherapy of colorectal cancer. Oncotarget, 2017, 8, 22034-22047.	0.8	25

#	Article	IF	CITATIONS
19	Multi-factorial modulation of colorectal carcinoma cells motility - partial coordination by the tetraspanin Co-029/tspan8. Oncotarget, 2017, 8, 27454-27470.	0.8	12
20	Plasmodium P36 determines host cell receptor usage during sporozoite invasion. ELife, 2017, 6, .	2.8	91
21	Automatic detection of diffusion modes within biological membranes using back-propagation neural network. BMC Bioinformatics, 2016, 17, 197.	1.2	58
22	TspanC8 tetraspanins differentially regulate the cleavage of ADAM10 substrates, Notch activation and ADAM10 membrane compartmentalization. Cellular and Molecular Life Sciences, 2016, 73, 1895-1915.	2.4	105
23	CD81 Controls Immunity to Listeria Infection through Rac-Dependent Inhibition of Proinflammatory Mediator Release and Activation of Cytotoxic T Cells. Journal of Immunology, 2015, 194, 6090-6101.	0.4	14
24	Tetraspanin CD9 participates in dysmegakaryopoiesis and stromal interactions in primary myelofibrosis. Haematologica, 2015, 100, 757-767.	1.7	9
25	Viruses and Tetraspanins: Lessons from Single Molecule Approaches. Viruses, 2014, 6, 1992-2011.	1.5	14
26	Effect of an anti-human Co-029/tspan8 mouse monoclonal antibody on tumor growth in a nude mouse model. Frontiers in Physiology, 2014, 5, 364.	1.3	37
27	Binding of sperm protein Izumo1 and its egg receptor Juno drives Cd9 accumulation in the intercellular contact area prior to fusion during mammalian fertilization. Development (Cambridge), 2014, 141, 3732-3739.	1.2	66
28	Tetraspanins at a glance. Journal of Cell Science, 2014, 127, 3641-8.	1.2	325
29	EWI-2wint promotes CD81 clustering that abrogates Hepatitis C Virus entry. Cellular Microbiology, 2013, 15, 1234-1252.	1.1	39
30	Organisation of the Tetraspanin Web. , 2013, , 47-90.		5
31	Normal muscle regeneration requires tight control of muscle cell fusion by tetraspanins CD9 and CD81. Nature Communications, 2013, 4, 1674.	5.8	72
32	TspanC8 tetraspanins regulate ADAM10/Kuzbanian trafficking and promote Notch activation in flies and mammals. Journal of Cell Biology, 2012, 199, 481-496.	2.3	161
33	Targeting tetraspanins in cancer. Expert Opinion on Therapeutic Targets, 2012, 16, 985-997.	1.5	35
34	The complexity of tetraspanins. Biochemical Society Transactions, 2011, 39, 501-505.	1.6	83
35	The Tetraspanin CD63 Regulates ESCRT-Independent and -Dependent Endosomal Sorting during Melanogenesis. Developmental Cell, 2011, 21, 708-721.	3.1	687
36	Differential functions of phospholipid binding and palmitoylation of tumour suppressor EWI2/PGRL. Biochemical Journal, 2011, 437, 399-411.	1.7	14

#	Article	IF	CITATIONS
37	Interacting Regions of CD81 and Two of Its Partners, EWI-2 and EWI-2wint, and Their Effect on Hepatitis C Virus Infection. Journal of Biological Chemistry, 2011, 286, 13954-13965.	1.6	51
38	α2β1 integrin controls association of Rac with the membrane and triggers quiescence of endothelial cells. Journal of Cell Science, 2010, 123, 2491-2501.	1.2	29
39	E-Cadherin/p120-Catenin and Tetraspanin Co-029 Cooperate for Cell Motility Control in Human Colon Carcinoma. Cancer Research, 2010, 70, 7674-7683.	0.4	77
40	Tetraspanin CD81 Is Required for <i>Listeria monocytogenes</i> Invasion. Infection and Immunity, 2010, 78, 204-209.	1.0	40
41	The association of CD81 with tetraspanin-enriched microdomains is not essential for Hepatitis C virus entry. BMC Microbiology, 2009, 9, 111.	1.3	36
42	A novel therapeutic strategy with anti-CD9 antibody in gastric cancers. Journal of Gastroenterology, 2009, 44, 889-896.	2.3	57
43	Analysis of the Î ³ -secretase interactome and validation of its association with tetraspanin-enriched microdomains. Nature Cell Biology, 2009, 11, 1340-1346.	4.6	121
44	In situ chemical cross-linking on living cells reveals CD9P-1 cis-oligomer at cell surface. Journal of Proteomics, 2009, 73, 93-102.	1.2	15
45	The Ig Domain Protein CD9P-1 Down-regulates CD81 Ability to Support Plasmodium yoelii Infection. Journal of Biological Chemistry, 2009, 284, 31572-31578.	1.6	26
46	Lateral organization of membrane proteins: tetraspanins spin their web. Biochemical Journal, 2009, 420, 133-154.	1.7	369
47	Blood diffusion and Th1-suppressive effects of galectin-9–containing exosomes released by Epstein-Barr virus–infected nasopharyngeal carcinoma cells. Blood, 2009, 113, 1957-1966.	0.6	350
48	Genes contributing to prion pathogenesis. Journal of General Virology, 2008, 89, 1777-1788.	1.3	116
49	Tetraspanins Regulate ADAM10-Mediated Cleavage of TNF- $\hat{l}\pm$ and Epidermal Growth Factor. Journal of Immunology, 2008, 181, 7002-7013.	0.4	132
50	Single-molecule analysis of CD9 dynamics and partitioning reveals multiple modes of interaction in the tetraspanin web. Journal of Cell Biology, 2008, 182, 765-776.	2.3	134
51	Hepatocyte Permissiveness to Plasmodium Infection Is Conveyed by a Short and Structurally Conserved Region of the CD81 Large Extracellular Domain. PLoS Pathogens, 2008, 4, e1000010.	2.1	80
52	Probing the interaction of tetraspanin CD151 with integrin α3β1 using a panel of monoclonal antibodies with distinct reactivities toward the CD151–integrin α3β1 complex. Biochemical Journal, 2008, 415, 417-427.	1.7	25
53	The CD81 Partner EWI-2wint Inhibits Hepatitis C Virus Entry. PLoS ONE, 2008, 3, e1866.	1.1	100
54	The transferrin receptor and the tetraspanin web molecules CD9, CD81, and CD9P-1 are differentially sorted into exosomes after TPA treatment of K562 cells. Journal of Cellular Biochemistry, 2007, 102, 650-664.	1.2	45

#	Article	IF	CITATIONS
55	Glycosylation status of the membrane protein CD9Pâ€1. Proteomics, 2007, 7, 3880-3895.	1.3	19
56	Alternative invasion pathways for plasmodium berghei sporozoites. International Journal for Parasitology, 2007, 37, 173-182.	1.3	57
57	CD9 controls the formation of clusters that contain tetraspanins and the integrin $\hat{1}\pm\hat{0}^21$, which are involved in human and mouse gamete fusion. Journal of Cell Science, 2006, 119, 416-424.	1.2	121
58	Dissociation of the complex between CD151 and laminin-binding integrins permits migration of epithelial cells. Experimental Cell Research, 2006, 312, 983-995.	1.2	45
59	The molecular players of sperm–egg fusion in mammals. Seminars in Cell and Developmental Biology, 2006, 17, 254-263.	2.3	142
60	Reduced fertility of female mice lacking CD81. Developmental Biology, 2006, 290, 351-358.	0.9	182
61	A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. Biochemical Journal, 2006, 393, 609-618.	1.7	217
62	Proteomic analysis of the tetraspanin web using LC-ESI-MS/MS and MALDI-FTICR-MS. Proteomics, 2006, 6, 1437-1449.	1.3	87
63	Membrane microdomains and proteomics: Lessons from tetraspanin microdomains and comparison with lipid rafts. Proteomics, 2006, 6, 6447-6454.	1.3	125
64	Expression of human CD81 differently affects host cell susceptibility to malaria sporozoites depending on the Plasmodium species. Cellular Microbiology, 2006, 8, 1134-1146.	1.1	94
65	Cholesterol contributes to the organization of tetraspanin-enriched microdomains and to CD81-dependent infection by malaria sporozoites. Journal of Cell Science, 2006, 119, 1992-2002.	1.2	116
66	Expression of Tâ€cadherin in tumor cells influences invasive potential of human hepatocellular carcinoma. FASEB Journal, 2006, 20, 2291-2301.	0.2	52
67	New Approach for High-Throughput Screening of Drug Activity on Plasmodium Liver Stages. Antimicrobial Agents and Chemotherapy, 2006, 50, 1586-1589.	1.4	40
68	Profiling of the Tetraspanin Web of Human Colon Cancer Cells. Molecular and Cellular Proteomics, 2006, 5, 845-857.	2.5	141
69	Contrasting Effects of EWI Proteins, Integrins, and Protein Palmitoylation on Cell Surface CD9 Organization. Journal of Biological Chemistry, 2006, 281, 12976-12985.	1.6	61
70	EWI-2 and EWI-F Link the Tetraspanin Web to the Actin Cytoskeleton through Their Direct Association with Ezrin-Radixin-Moesin Proteins. Journal of Biological Chemistry, 2006, 281, 19665-19675.	1.6	178
71	A Role for Apical Membrane Antigen 1 during Invasion of Hepatocytes by Plasmodium falciparum Sporozoites. Journal of Biological Chemistry, 2004, 279, 9490-9496.	1.6	265
72	Tetraspanin CD82 controls the association of cholesterol-dependent microdomains with the actin cytoskeleton in T lymphocytes: relevance to co-stimulation. Journal of Cell Science, 2004, 117, 5269-5282.	1.2	91

#	Article	IF	CITATIONS
73	Tetraspanins connect several types of Ig proteins: IgM is a novel component of the tetraspanin web on B-lymphoid cells. Cancer Immunology, Immunotherapy, 2004, 53, 148-152.	2.0	31
74	Tetraspan and beta-1 integrins expression pattern of the epithelial lung adenocarcinoma cell line A549 and its sensitivity to divalent cations. , 2004, 60B, 31-36.		8
75	A tiny thread towards a tetraspanin function. Pathologie Et Biologie, 2004, 52, 55-57.	2.2	7
76	A physical and functional link between cholesterol and tetraspanins. European Journal of Immunology, 2003, 33, 2479-2489.	1.6	202
77	Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nature Medicine, 2003, 9, 93-96.	15.2	327
78	Multiple levels of interactions within the tetraspanin web. Biochemical and Biophysical Research Communications, 2003, 304, 107-112.	1.0	116
79	A Functionally Relevant Conformational Epitope on the CD9 Tetraspanin Depends on the Association with Activated β1Integrin. Journal of Biological Chemistry, 2003, 278, 208-218.	1.6	66
80	The Tetraspanin CD81 Regulates the Expression of CD19 During B Cell Development in a Postendoplasmic Reticulum Compartment. Journal of Immunology, 2003, 171, 4062-4072.	0.4	117
81	EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells. Biochemical Journal, 2003, 373, 409-421.	1.7	133
82	EWI2/PGRL associates with the metastasis suppressor KAI1/CD82 and inhibits the migration of prostate cancer cells. Cancer Research, 2003, 63, 2665-74.	0.4	85
83	FAK-mediated Inhibition of Vascular Smooth Muscle Cell Migration by the Tetraspanin CD9. Thrombosis and Haemostasis, 2002, 87, 1043-1050.	1.8	17
84	Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Letters, 2002, 516, 139-144.	1.3	202
85	Residues SFQ (173-175) in the large extracellular loop of CD9 are required for gamete fusion. Development (Cambridge), 2002, 129, 1995-2002.	1.2	105
86	Residues SFQ (173-175) in the large extracellular loop of CD9 are required for gamete fusion. Development (Cambridge), 2002, 129, 1995-2002.	1.2	32
87	FAK-mediated inhibition of vascular smooth muscle cell migration by the tetraspanin CD9. Thrombosis and Haemostasis, 2002, 87, 1043-50.	1.8	7
88	CD9 and megakaryocyte differentiation. Blood, 2001, 97, 1982-1989.	0.6	61
89	Tetraspanins and malignancy. Expert Reviews in Molecular Medicine, 2001, 3, 1-17.	1.6	110
90	The Major CD9 and CD81 Molecular Partner. Journal of Biological Chemistry, 2001, 276, 14329-14337.	1.6	208

#	Article	IF	CITATIONS
91	CD46 (membrane cofactor protein) associates with multiple \hat{I}^21 integrins and tetraspans. European Journal of Immunology, 2000, 30, 900-907.	1.6	93
92	Sequence and expression of seven new tetraspans. BBA - Proteins and Proteomics, 2000, 1478, 159-163.	2.1	83
93	Chimeric CD46/DAF molecules reveal a cryptic functional role for SCR1 of DAF in regulating complement activation. Molecular Immunology, 2000, 37, 687-696.	1.0	5
94	Severely Reduced Female Fertility in CD9-Deficient Mice. Science, 2000, 287, 319-321.	6.0	610
95	Selective tetraspan–integrin complexes (CD81/α4β1, CD151/α3β1, CD151/α6β1) under conditions disruptin tetraspan interactions. Biochemical Journal, 1999, 340, 103-111.	^{ng} 1.7	200
96	Selective tetraspan‒integrin complexes (CD81/α4β1, CD151/α3β1, CD151/α6β1) under conditions disruptin tetraspan interactions. Biochemical Journal, 1999, 340, 103.	.g 1.7	177
97	CD19 Is Linked to the Integrin-associated Tetraspans CD9, CD81, and CD82. Journal of Biological Chemistry, 1998, 273, 30537-30543.	1.6	123
98	Upregulation of CD9 expression during TPA treatment of K562 cells. Leukemia, 1997, 11, 1290-1297.	3.3	18
99	Functional Analysis of Four Tetraspans, CD9, CD53, CD81, and CD82, Suggests a Common Role in Costimulation, Cell Adhesion, and Migration: Only CD9 Upregulates HB-EGF Activity. Cellular Immunology, 1997, 182, 105-112.	1.4	150
100	CD9, but not other tetraspans, associates with the \hat{I}^21 integrin precursor. European Journal of Immunology, 1997, 27, 1919-1927.	1.6	53
101	CD9, CD63, CD81, and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA integrins. European Journal of Immunology, 1996, 26, 2657-2665.	1.6	349
102	Non random activation of endogenous interleukin-2, (IL-2), IL-2 receptor α and IL-2 receptor β genes after transfection of mouse fibroblasts with a cDNA for the α chain of the human IL-2 receptor. European Journal of Immunology, 1995, 25, 1905-1912.	1.6	2
103	Anti-Platelet Antibody Interactions with Fcl ³ Receptor. Seminars in Thrombosis and Hemostasis, 1995, 21, 10-22.	1.5	35
104	CD9 antigen is an accessory subunit of the VLA integrin complexes. European Journal of Immunology, 1994, 24, 3005-3013.	1.6	147
105	How Interleukin-2 can Affect Human Fibroblasts Behaviour. Pathology Research and Practice, 1994, 190, 942-949.	1.0	4
106	Human melanoma cells express a functional interleukin-2 receptor. International Journal of Cancer, 1993, 55, 164-170.	2.3	33
107	Molecular cloning of the mouse equivalent of CD9 antigen. Thrombosis Research, 1993, 71, 377-383.	0.8	30
108	Organization of the Human CD9 Gene. Genomics, 1993, 16, 132-138.	1.3	20

#	Article	IF	CITATIONS
109	Expression of the interleukin-2 receptor on human fibroblasts and its biological significance. International Immunology, 1992, 4, 739-746.	1.8	46
110	Low concentrations of sodium azide specifically inhibit a thromboxane A2 pathway in human platelets. Thrombosis Research, 1992, 66, 101-110.	0.8	4
111	Interaction of two GPIIb/IIIa monoclonal antibodies with platelet Fc receptor (FcÎ ³ RII). British Journal of Haematology, 1991, 78, 80-86.	1.2	39
112	Extensive C1q-complement initiated lysis of human platelets by IgG subclass murine monoclonal antibodies to the CD9 antigen. Thrombosis Research, 1990, 59, 831-839.	0.8	20