## Sebastian Kmiecik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1255847/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A3D 2.0 Update for the Prediction and Optimization of Protein Solubility. Methods in Molecular<br>Biology, 2022, 2406, 65-84.                                                                                                        | 0.4 | 7         |
| 2  | Protocols for Rational Design of Protein Solubility and Aggregation Properties Using Aggrescan3D<br>Standalone. Methods in Molecular Biology, 2022, 2340, 17-40.                                                                     | 0.4 | 0         |
| 3  | Novel Tetrazole-Based Antimicrobial Agents Targeting Clinical Bacteria Strains: Exploring the<br>Inhibition of Staphylococcus aureus DNA Topoisomerase IV and Gyrase. International Journal of<br>Molecular Sciences, 2022, 23, 378. | 1.8 | 2         |
| 4  | A3D database: structure-based predictions of protein aggregation for the human proteome.<br>Bioinformatics, 2022, 38, 3121-3123.                                                                                                     | 1.8 | 4         |
| 5  | MAPIYA contact map server for identification and visualization of molecular interactions in proteins and biological complexes. Nucleic Acids Research, 2022, 50, W474-W482.                                                          | 6.5 | 14        |
| 6  | The Effect of Conjugation of Ciprofloxacin and Moxifloxacin with Fatty Acids on Their Antibacterial and Anticancer Activity. International Journal of Molecular Sciences, 2022, 23, 6261.                                            | 1.8 | 9         |
| 7  | Design and Synthesis of Menthol and Thymol Derived Ciprofloxacin: Influence of Structural<br>Modifications on the Antibacterial Activity and Anticancer Properties. International Journal of<br>Molecular Sciences, 2022, 23, 6600.  | 1.8 | 1         |
| 8  | Docking of peptides to GPCRs using a combination of CABS-dock with FlexPepDock refinement.<br>Briefings in Bioinformatics, 2021, 22, .                                                                                               | 3.2 | 8         |
| 9  | Molecular Dynamics Scoring of Protein–Peptide Models Derived from Coarse-Grained Docking.<br>Molecules, 2021, 26, 3293.                                                                                                              | 1.7 | 7         |
| 10 | Protein–Protein Docking with Large-Scale Backbone Flexibility Using Coarse-Grained Monte-Carlo<br>Simulations. International Journal of Molecular Sciences, 2021, 22, 7341.                                                          | 1.8 | 5         |
| 11 | Phosphorylation of the conserved Câ€terminal domain of ribosomal Pâ€proteins impairs the mode of interaction with plant toxins. FEBS Letters, 2021, 595, 2221-2236.                                                                  | 1.3 | 3         |
| 12 | Synthetic Transition from Thiourea-Based Compounds to Tetrazole Derivatives: Structure and<br>Biological Evaluation of Synthesized New N-(Furan-2-ylmethyl)-1H-tetrazol-5-amine Derivatives.<br>Molecules, 2021, 26, 323.            | 1.7 | 4         |
| 13 | Flexible docking of peptides to proteins using CABSâ€dock. Protein Science, 2020, 29, 211-222.                                                                                                                                       | 3.1 | 48        |
| 14 | Computational reconstruction of atomistic protein structures from coarse-grained models.<br>Computational and Structural Biotechnology Journal, 2020, 18, 162-176.                                                                   | 1.9 | 43        |
| 15 | Phosphorylation of the Nâ€ŧerminal domain of ribosomal Pâ€stalk protein uL10 governs its association with the ribosome. FEBS Letters, 2020, 594, 3002-3019.                                                                          | 1.3 | 4         |
| 16 | Isoxazole-containing 5â $€^2$ mRNA cap analogues as inhibitors of the translation initiation process.<br>Bioorganic Chemistry, 2020, 96, 103583.                                                                                     | 2.0 | 3         |
| 17 | Docking interactions determine early cleavage events in insulin proteolysis by pepsin: Experiment and simulation. International Journal of Biological Macromolecules, 2020, 149, 1151-1160.                                          | 3.6 | 12        |
| 18 | Protocols for All-Atom Reconstruction and High-Resolution Refinement of Protein–Peptide Complex<br>Structures. Methods in Molecular Biology, 2020, 2165, 273-287.                                                                    | 0.4 | 7         |

SEBASTIAN KMIECIK

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Protocols for Fast Simulations of Protein Structure Flexibility Using CABS-Flex and SURPASS.<br>Methods in Molecular Biology, 2020, 2165, 337-353.                                                                                                  | 0.4 | 15        |
| 20 | CABS-flex standalone: a simulation environment for fast modeling of protein flexibility.<br>Bioinformatics, 2019, 35, 694-695.                                                                                                                      | 1.8 | 79        |
| 21 | Aggrescan3D (A3D) 2.0: prediction and engineering of protein solubility. Nucleic Acids Research, 2019, 47, W300-W307.                                                                                                                               | 6.5 | 91        |
| 22 | Aggrescan3D standalone package for structure-based prediction of protein aggregation properties.<br>Bioinformatics, 2019, 35, 3834-3835.                                                                                                            | 1.8 | 22        |
| 23 | CABS-dock standalone: a toolbox for flexible protein–peptide docking. Bioinformatics, 2019, 35, 4170-4172.                                                                                                                                          | 1.8 | 55        |
| 24 | Modeling of Disordered Protein Structures Using Monte Carlo Simulations and Knowledge-Based<br>Statistical Force Fields. International Journal of Molecular Sciences, 2019, 20, 606.                                                                | 1.8 | 45        |
| 25 | Protein Dynamics Simulations Using Coarse-Grained Models. Springer Series on Bio- and Neurosystems, 2019, , 61-87.                                                                                                                                  | 0.2 | 4         |
| 26 | Protein–peptide docking using CABS-dock and contact information. Briefings in Bioinformatics, 2019, 20, 2299-2305.                                                                                                                                  | 3.2 | 35        |
| 27 | Protein Structure Prediction Using Coarse-Grained Models. Springer Series on Bio- and Neurosystems, 2019, , 27-59.                                                                                                                                  | 0.2 | 3         |
| 28 | Denatured proteins and early folding intermediates simulated in a reduced conformational space<br>Acta Biochimica Polonica, 2019, 53, 131-143.                                                                                                      | 0.3 | 25        |
| 29 | Synthesis, structural and antimicrobial studies of type II topoisomerase-targeted copper(II) complexes of 1,3-disubstituted thiourea ligands. Journal of Inorganic Biochemistry, 2018, 182, 61-70.                                                  | 1.5 | 25        |
| 30 | Protein–peptide docking: opportunities and challenges. Drug Discovery Today, 2018, 23, 1530-1537.                                                                                                                                                   | 3.2 | 212       |
| 31 | Modeling of Protein Structural Flexibility and Large-Scale Dynamics: Coarse-Grained Simulations and Elastic Network Models. International Journal of Molecular Sciences, 2018, 19, 3496.                                                            | 1.8 | 60        |
| 32 | CABS-flex 2.0: a web server for fast simulations of flexibility of protein structures. Nucleic Acids<br>Research, 2018, 46, W338-W343.                                                                                                              | 6.5 | 249       |
| 33 | Combining Structural Aggregation Propensity and Stability Predictions To Redesign Protein Solubility.<br>Molecular Pharmaceutics, 2018, 15, 3846-3859.                                                                                              | 2.3 | 45        |
| 34 | Design and synthesis of novel 1H-tetrazol-5-amine based potent antimicrobial agents: DNA<br>topoisomerase IV and gyrase affinity evaluation supported by molecular docking studies. European<br>Journal of Medicinal Chemistry, 2018, 156, 631-640. | 2.6 | 27        |
| 35 | Kinetics and mechanical stability of the fibril state control fibril formation time of polypeptide chains: A computational study. Journal of Chemical Physics, 2018, 148, 215106.                                                                   | 1.2 | 21        |
| 36 | Highly Flexible Protein-Peptide Docking Using CABS-Dock. Methods in Molecular Biology, 2017, 1561,<br>69-94.                                                                                                                                        | 0.4 | 33        |

SEBASTIAN KMIECIK

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | One-Dimensional Structural Properties of Proteins in the Coarse-Grained CABS Model. Methods in Molecular Biology, 2017, 1484, 83-113.                                                                      | 0.4  | 8         |
| 38 | Modeling EphB4-EphrinB2 protein–protein interaction using flexible docking of a short linear motif.<br>BioMedical Engineering OnLine, 2017, 16, 71.                                                        | 1.3  | 17        |
| 39 | A protocol for CABS-dock protein–peptide docking driven by side-chain contact information.<br>BioMedical Engineering OnLine, 2017, 16, 73.                                                                 | 1.3  | 9         |
| 40 | Protein-peptide molecular docking with large-scale conformational changes: the p53-MDM2 interaction. Scientific Reports, 2016, 6, 37532.                                                                   | 1.6  | 44        |
| 41 | 5-HT 2 receptor affinity, docking studies and pharmacological evaluation of a series of<br>1,3-disubstituted thiourea derivatives. European Journal of Medicinal Chemistry, 2016, 116, 173-186.            | 2.6  | 23        |
| 42 | Coarse-Grained Simulations of Membrane Insertion and Folding of Small Helical Proteins Using the CABS Model. Journal of Chemical Information and Modeling, 2016, 56, 2207-2215.                            | 2.5  | 17        |
| 43 | Coarse-Grained Protein Models and Their Applications. Chemical Reviews, 2016, 116, 7898-7936.                                                                                                              | 23.0 | 721       |
| 44 | Protein-Peptide Docking with High Conformational Flexibility using CABS-dock Web Tool. Biophysical<br>Journal, 2016, 110, 543a.                                                                            | 0.2  | 1         |
| 45 | Modeling of protein–peptide interactions using the CABS-dock web server for binding site search and flexible docking. Methods, 2016, 93, 72-83.                                                            | 1.9  | 137       |
| 46 | CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Research, 2015, 43, W419-W424.                                            | 6.5  | 331       |
| 47 | AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. Nucleic<br>Acids Research, 2015, 43, W306-W313.                                                                  | 6.5  | 201       |
| 48 | CABS-flex predictions of protein flexibility compared with NMR ensembles. Bioinformatics, 2014, 30, 2150-2154.                                                                                             | 1.8  | 75        |
| 49 | Coarse-Grained Protein Models in Structure Prediction. Springer Series in Bio-/neuroinformatics, 2014, , 25-53.                                                                                            | 0.1  | 1         |
| 50 | Coarse-Grained Modeling of Protein Dynamics. Springer Series in Bio-/neuroinformatics, 2014, , 55-79.                                                                                                      | 0.1  | 8         |
| 51 | Mechanism of Folding and Binding of an Intrinsically Disordered Protein As Revealed by ab Initio Simulations. Journal of Chemical Theory and Computation, 2014, 10, 2224-2231.                             | 2.3  | 41        |
| 52 | Structure Prediction of the Second Extracellular Loop in G-Protein-Coupled Receptors. Biophysical<br>Journal, 2014, 106, 2408-2416.                                                                        | 0.2  | 30        |
| 53 | Protocols for Efficient Simulations of Long-Time Protein Dynamics Using Coarse-Grained CABS Model.<br>Methods in Molecular Biology, 2014, 1137, 235-250.                                                   | 0.4  | 13        |
| 54 | Consistent View of Protein Fluctuations from All-Atom Molecular Dynamics and Coarse-Grained<br>Dynamics with Knowledge-Based Force-Field. Journal of Chemical Theory and Computation, 2013, 9,<br>119-125. | 2.3  | 85        |

SEBASTIAN KMIECIK

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Combining Coarse-Grained Protein Models with Replica-Exchange All-Atom Molecular Dynamics.<br>International Journal of Molecular Sciences, 2013, 14, 9893-9905.                                        | 1.8 | 22        |
| 56 | CABS-flex: server for fast simulation of protein structure fluctuations. Nucleic Acids Research, 2013, 41, W427-W431.                                                                                  | 6.5 | 132       |
| 57 | CABS-fold: server for the de novo and consensus-based prediction of protein structure. Nucleic Acids Research, 2013, 41, W406-W411.                                                                    | 6.5 | 86        |
| 58 | From Coarse-Grained to Atomic-Level Characterization of Protein Dynamics: Transition State for the Folding of B Domain of Protein A. Journal of Physical Chemistry B, 2012, 116, 7026-7032.            | 1.2 | 31        |
| 59 | Optimization of protein models. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012, 2, 479-493.                                                                                    | 6.2 | 32        |
| 60 | Simulation of Chaperonin Effect on Protein Folding: A Shift from Nucleation–Condensation to<br>Framework Mechanism. Journal of the American Chemical Society, 2011, 133, 10283-10289.                  | 6.6 | 40        |
| 61 | Multiscale Approach to Protein Folding Dynamics. , 2011, , 281-293.                                                                                                                                    |     | 11        |
| 62 | Folding Pathway of the B1 Domain of Protein G Explored by Multiscale Modeling. Biophysical Journal, 2008, 94, 726-736.                                                                                 | 0.2 | 96        |
| 63 | Characterization of protein-folding pathways by reduced-space modeling. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12330-12335.                       | 3.3 | 87        |
| 64 | Folding pathway of the B1 domain of protein G explored by a multiscale modeling. Nature Precedings, 2007, , .                                                                                          | 0.1 | 0         |
| 65 | Backbone building from quadrilaterals: A fast and accurate algorithm for protein backbone<br>reconstruction from alpha carbon coordinates. Journal of Computational Chemistry, 2007, 28,<br>1593-1597. | 1.5 | 102       |
| 66 | Towards the high-resolution protein structure prediction. Fast refinement of reduced models with all-atom force field. BMC Structural Biology, 2007, 7, 43.                                            | 2.3 | 45        |
| 67 | Denatured proteins and early folding intermediates simulated in a reduced conformational space.<br>Acta Biochimica Polonica, 2006, 53, 131-44.                                                         | 0.3 | 10        |