George Papachristos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1255446/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prospects of modelling societal transitions: Position paper of an emerging community. Environmental Innovation and Societal Transitions, 2015, 17, 41-58.	5.5	155
2	System interactions in socio-technical transitions: Extending the multi-level perspective. Environmental Innovation and Societal Transitions, 2013, 7, 53-69.	5.5	89
3	Modelling Sustainability Transitions: An Assessment of Approaches and Challenges. Jasss, 2018, 21, .	1.8	69
4	System dynamics modelling and simulation for sociotechnical transitions research. Environmental Innovation and Societal Transitions, 2019, 31, 248-261.	5.5	58
5	A system dynamics model of socio-technical regime transitions. Environmental Innovation and Societal Transitions, 2011, 1, 202-233.	5.5	45
6	A mechanism based transition research methodology: Bridging analytical approaches. Futures, 2018, 98, 57-71.	2.5	41
7	Bridging the gap: The need for a systems thinking approach in understanding and addressing energy and environmental performance in buildings. Indoor and Built Environment, 2019, 28, 100-117.	2.8	40
8	Towards multi-system sociotechnical transitions: why simulate. Technology Analysis and Strategic Management, 2014, 26, 1037-1055.	3.5	36
9	Household electricity consumption and CO 2 emissions in the Netherlands: A model-based analysis. Energy and Buildings, 2015, 86, 403-414.	6.7	34
10	Transition inertia due to competition in supply chains with remanufacturing and recycling: A systems dynamics model. Environmental Innovation and Societal Transitions, 2014, 12, 47-65.	5.5	31
11	A retroductive systems-based methodology for socio-technical transitions research. Technological Forecasting and Social Change, 2016, 108, 1-14.	11.6	29
12	Low carbon building performance in the construction industry: A multi-method approach of project management operations and building energy use applied in a UK public office building. Energy and Buildings, 2020, 206, 109609.	6.7	25
13	Diversity in technology competition: The link between platforms and sociotechnical transitions. Renewable and Sustainable Energy Reviews, 2017, 73, 291-306.	16.4	23
14	An agent-based model of climate-energy policies to promote wind propulsion technology in shipping. Environmental Innovation and Societal Transitions, 2019, 31, 33-53.	5.5	20
15	A holistic approach to evaluate building performance gap of green office buildings: A case study in China. Building and Environment, 2020, 175, 106819.	6.9	20
16	Critical realism in supply chain research. International Journal of Physical Distribution and Logistics Management, 2012, 42, 906-930.	7.4	18
17	Homeowner low carbon retrofits: Implications for future UK policy. Energy Policy, 2021, 155, 112344.	8.8	15
18	Disrupting transitions: Qualitatively modelling the impact of Covid-19 on UK food and mobility provision. Environmental Innovation and Societal Transitions. 2021. 40. 1-19.	5.5	12

GEORGE PAPACHRISTOS

#	Article	IF	CITATIONS
19	Internal supply-chain competition in remanufacturing: operations strategies, performance and environmental effects. International Journal of Logistics Systems and Management, 2014, 19, 187.	0.2	11
20	A System Dynamics Model of Standards Competition. IEEE Transactions on Engineering Management, 2021, 68, 18-32.	3.5	11
21	Better before worse trajectories in food systems? An investigation of synergies and trade-offs through climate-smart agriculture and system dynamics. Agricultural Systems, 2021, 190, 103131.	6.1	11
22	Low carbon building performance in the construction industry: a multi-method approach of system dynamics and building performance modelling. Construction Management and Economics, 2020, 38, 856-876.	3.0	9
23	Process perspective on homeowner energy retrofits: A qualitative metasynthesis. Energy Policy, 2022, 160, 112669.	8.8	8
24	Understanding platform competition through simulation: a research outline. Technology Analysis and Strategic Management, 2018, 30, 1409-1421.	3.5	7
25	The governance of platform development processes: A metaphor and a simulation model. Technological Forecasting and Social Change, 2019, 138, 190-203.	11.6	6
26	Platform competition: A research outline for modelling and simulation research. Journal of Engineering and Technology Management - JET-M, 2020, 56, 101567.	2.7	6
27	System dynamics methodology and research. , 2019, , 119-138.		2
28	Dynamic Competition in Supply Chains with Downstream Remanufacturing Capacity. , 2010, , 257-279.		1
29	How to value education in an era of fast technological change. IEEE Engineering Management Review, 2015, 43, 10-11.	1.3	0