Bocheng Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1255310/publications.pdf

Version: 2024-02-01

48 papers

6,082 citations

36 h-index 206112 48 g-index

48 all docs 48 docs citations

48 times ranked 8093 citing authors

#	Article	IF	CITATIONS
1	Mesoporous TiO ₂ Nanocrystals Grown in Situ on Graphene Aerogels for High Photocatalysis and Lithium-Ion Batteries. Journal of the American Chemical Society, 2014, 136, 5852-5855.	13.7	745
2	Efficient Solar Light Harvesting CdS/Co ₉ S ₈ Hollow Cubes for Zâ€6cheme Photocatalytic Water Splitting. Angewandte Chemie - International Edition, 2017, 56, 2684-2688.	13.8	445
3	Recent advances in three-dimensional graphene based materials for catalysis applications. Chemical Society Reviews, 2018, 47, 2165-2216.	38.1	412
4	Fabrication of Nickel–Cobalt Bimetal Phosphide Nanocages for Enhanced Oxygen Evolution Catalysis. Advanced Functional Materials, 2018, 28, 1706008.	14.9	370
5	Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nature Communications, 2020, 11, 4066.	12.8	337
6	CeO ₂ -Induced Interfacial Co ²⁺ Octahedral Sites and Oxygen Vacancies for Water Oxidation. ACS Catalysis, 2019, 9, 6484-6490.	11.2	278
7	Spatially Separated CdS Shells Exposed with Reduction Surfaces for Enhancing Photocatalytic Hydrogen Evolution. Advanced Functional Materials, 2017, 27, 1702624.	14.9	238
8	Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis. Scientific Reports, 2015, 5, 8591.	3. 3	235
9	Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions. Applied Catalysis B: Environmental, 2018, 222, 146-156.	20.2	231
10	Emerging Cocatalysts on gâ€C ₃ N ₄ for Photocatalytic Hydrogen Evolution. Small, 2021, 17, e2101070.	10.0	223
11	Ultrathin g-C3N4 nanosheet with hierarchical pores and desirable energy band for highly efficient H2O2 production. Applied Catalysis B: Environmental, 2020, 267, 118396.	20.2	183
12	Highly-dispersed Boron-doped Graphene Nanosheets Loaded with TiO2 Nanoparticles for Enhancing CO2 Photoreduction. Scientific Reports, 2014, 4, 6341.	3.3	156
13	Self-modified breaking hydrogen bonds to highly crystalline graphitic carbon nitrides nanosheets for drastically enhanced hydrogen production. Applied Catalysis B: Environmental, 2018, 232, 306-313.	20.2	137
14	Remarkably Enhanced Hydrogen Generation of Organolead Halide Perovskites via Piezocatalysis and Photocatalysis. Advanced Energy Materials, 2019, 9, 1901801.	19.5	134
15	St \tilde{A} q ber-like method to synthesize ultradispersed Fe 3 O 4 nanoparticles on graphene with excellent Photo-Fenton reaction and high-performance lithium storage. Applied Catalysis B: Environmental, 2016, 183, 216-223.	20.2	125
16	Electron directed migration cooperated with thermodynamic regulation over bimetallic NiFeP/g-C3N4 for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 259, 118078.	20.2	113
17	Efficient Solar Light Harvesting CdS/Co ₉ S ₈ Hollow Cubes for Zâ€Scheme Photocatalytic Water Splitting. Angewandte Chemie, 2017, 129, 2728-2732.	2.0	108
18	Integration of redox cocatalysts for artificial photosynthesis. Energy and Environmental Science, 2021, 14, 5260-5288.	30.8	105

#	Article	IF	Citations
19	Stöber-like method to synthesize ultralight, porous, stretchable Fe ₂ O ₃ /graphene aerogels for excellent performance in photo-Fenton reaction and electrochemical capacitors. Journal of Materials Chemistry A, 2015, 3, 12820-12827.	10.3	104
20	A Ternary Dumbbell Structure with Spatially Separated Catalytic Sites for Photocatalytic Overall Water Splitting. Advanced Science, 2020, 7, 1903568.	11.2	104
21	A robust and efficient catalyst of Cd _x Zn _{1â^'x} Se motivated by CoP for photocatalytic hydrogen evolution under sunlight irradiation. Chemical Communications, 2017, 53, 897-900.	4.1	103
22	A Brown Mesoporous TiO _{2â€x} /MCF Composite with an Extremely High Quantum Yield of Solar Energy Photocatalysis for H ₂ Evolution. Small, 2015, 11, 1920-1929.	10.0	99
23	One-step large-scale highly active g-C ₃ N ₄ nanosheets for efficient sunlight-driven photocatalytic hydrogen production. Dalton Transactions, 2017, 46, 10678-10684.	3.3	92
24	Dopant-Induced Edge and Basal Plane Catalytic Sites on Ultrathin C ₃ N ₄ Nanosheets for Photocatalytic Water Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 7497-7502.	6.7	80
25	Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance. Scientific Reports, 2016, 6, 29099.	3.3	75
26	Phosphorus Incorporation into Co ₉ S ₈ Nanocages for Highly Efficient Oxygen Evolution Catalysis. Small, 2019, 15, e1904507.	10.0	75
27	Chiral Carbonaceous Nanotubes Modified with Titania Nanocrystals: Plasmonâ€Free and Recyclable SERS Sensitivity. Angewandte Chemie - International Edition, 2015, 54, 10643-10647.	13.8	72
28	Active site engineering of Fe- and Ni-sites for highly efficient electrochemical overall water splitting. Journal of Materials Chemistry A, 2018, 6, 21445-21451.	10.3	68
29	Computational Design of Transition Metal Single-Atom Electrocatalysts on PtS ₂ for Efficient Nitrogen Reduction. ACS Applied Materials & Interfaces, 2020, 12, 20448-20455.	8.0	58
30	Nickel Boride Cocatalyst Boosting Efficient Photocatalytic Hydrogen Evolution Reaction. Industrial & Engineering Chemistry Research, 2018, 57, 8125-8130.	3.7	57
31	Metal Substitution Steering Electron Correlations in Pyrochlore Ruthenates for Efficient Acidic Water Oxidation. ACS Nano, 2021, 15, 8537-8548.	14.6	54
32	Monolithic Integration of Allâ€inâ€One Supercapacitor for 3D Electronics. Advanced Energy Materials, 2019, 9, 1900037.	19.5	51
33	Realization of all-in-one hydrogen-evolving photocatalysts via selective atomic substitution. Applied Catalysis B: Environmental, 2021, 298, 120518.	20.2	49
34	Rational Design of a Unique Ternary Structure for Highly Photocatalytic Nitrobenzene Reduction. Journal of Physical Chemistry C, 2016, 120, 12125-12131.	3.1	43
35	Accelerated oxygen evolution kinetics on nickel–iron diselenide nanotubes by modulating electronic structure. Materials Today Energy, 2019, 11, 89-96.	4.7	42
36	Prolonged electron lifetime in sulfur vacancy-rich ZnCdS nanocages by interstitial phosphorus doping for photocatalytic water reduction. Materials Chemistry Frontiers, 2020, 4, 3234-3239.	5.9	42

#	Article	IF	CITATIONS
37	Fluorine doped TiO2/mesocellular foams with an efficient photocatalytic activity. Catalysis Today, 2019, 327, 340-346.	4.4	38
38	Vacancy Engineering of Ultrathin 2D Materials for Photocatalytic CO ₂ Reduction. ChemNanoMat, 2021, 7, 368-379.	2.8	35
39	Facile preparation of C-modified TiO ₂ supported on MCF for high visible-light-driven photocatalysis. RSC Advances, 2015, 5, 17802-17808.	3.6	33
40	Nitrogen-induced interfacial electronic structure of NiS ₂ /CoS ₂ with optimized water and hydrogen binding abilities for efficient alkaline hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 719-725.	10.3	33
41	Robust Photoelectrochemical Oxygen Evolution with N, Fe–CoS ₂ Nanorod Arrays. ACS Applied Materials & Distriction (1998) A	8.0	21
42	Hierarchical supercapacitor electrodes based on metallized glass fiber for ultrahigh areal capacitance. Energy Storage Materials, 2019, 20, 315-323.	18.0	18
43	Cobalt phosphide nanocages encapsulated with graphene as ultralong cycle life anodes for reversible lithium storage. Research on Chemical Intermediates, 2018, 44, 7847-7859.	2.7	16
44	Spin state engineering of spinel oxides by integration of Cr doping and a p–n junction for water oxidation. Chemical Communications, 2022, 58, 6642-6645.	4.1	15
45	Improved air-stability of an organic–inorganic perovskite with anhydrously transferred graphene. Journal of Materials Chemistry C, 2018, 6, 8663-8669.	5.5	9
46	Graphene-Based Photo-Fenton Catalysts for Pollutant Control. Transactions of Tianjin University, 2021, 27, 110-126.	6.4	9
47	Photocatalysis: A Brown Mesoporous TiO _{2â€x} /MCF Composite with an Extremely High Quantum Yield of Solar Energy Photocatalysis for H ₂ Evolution (Small 16/2015). Small, 2015, 11, 1919-1919.	10.0	7
48	A facile strategy to prepare Fe3+ modified brookite TiO2 with high photocatalytic activity under ultraviolet light and visible light. Research on Chemical Intermediates, 2017, 43, 2055-2066.	2.7	5