
Ignacio D Rodriguez-Llorente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1255200/publications.pdf Version: 2024-02-01

Ιςνάζιο D

#	Article	lF	CITATIONS
1	Assessing the Biofortification of Wheat Plants by Combining a Plant Growth-Promoting Rhizobacterium (PGPR) and Polymeric Fe-Nanoparticles: Allies or Enemies?. Agronomy, 2022, 12, 228.	1.3	10
2	Improved Medicago sativa Nodulation under Stress Assisted by Variovorax sp. Endophytes. Plants, 2022, 11, 1091.	1.6	17
3	Role of Nodulation-Enhancing Rhizobacteria in the Promotion of Medicago sativa Development in Nutrient-Poor Soils. Plants, 2022, 11, 1164.	1.6	10
4	Coastal Ecosystems as Sources of Biofertilizers in Agriculture: From Genomics to Application in an Urban Orchard. Frontiers in Marine Science, 2021, 8, .	1.2	8
5	Consortia of Plant-Growth-Promoting Rhizobacteria Isolated from Halophytes Improve Response of Eight Crops to Soil Salinization and Climate Change Conditions. Agronomy, 2021, 11, 1609.	1.3	27
6	Impact of Plant Growth Promoting Bacteria on Salicornia ramosissima Ecophysiology and Heavy Metal Phytoremediation Capacity in Estuarine Soils. Frontiers in Microbiology, 2020, 11, 553018.	1.5	47
7	Microbial strategies in non-target invasive Spartina densiflora for heavy metal clean up in polluted saltmarshes. Estuarine, Coastal and Shelf Science, 2020, 238, 106730.	0.9	6
8	The ACC-Deaminase Producing Bacterium Variovorax sp. CT7.15 as a Tool for Improving Calicotome villosa Nodulation and Growth in Arid Regions of Tunisia. Microorganisms, 2020, 8, 541.	1.6	16
9	Halomonas radicis sp. nov., isolated from Arthrocnemum macrostachyum growing in the Odiel marshes(Spain) and emended descriptions of Halomonas xinjiangensis and Halomonas zincidurans. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 220-227.	0.8	15
10	Pseudoalteromonas rhizosphaerae sp. nov., a novel plant growth-promoting bacterium with potential use in phytoremediation. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 3287-3294.	0.8	15
11	Bacterial Endophytes from Halophytes: How Do They Help Plants to Alleviate Salt Stress?. , 2019, , 147-160.		16
12	Competition for alfalfa nodulation under metal stress by the metalâ€ŧolerant strain <i>Ochrobactrum cytisi</i> Azn6.2. Annals of Applied Biology, 2019, 175, 184-192.	1.3	14
13	Safe Cultivation of Medicago sativa in Metal-Polluted Soils from Semi-Arid Regions Assisted by Heat- and Metallo-Resistant PGPR. Microorganisms, 2019, 7, 212.	1.6	61
14	Soil phenanthrene phytoremediation capacity in bacteria-assisted Spartina densiflora. Ecotoxicology and Environmental Safety, 2019, 182, 109382.	2.9	10
15	Targeting Acr3 from <i>Ensifer medicae</i> to the plasma membrane or to the tonoplast of tobacco hairy roots allows arsenic extrusion or improved accumulation. Effect of <i>acr3</i> expression on the root transcriptome. Metallomics, 2019, 11, 1864-1886.	1.0	9
16	Effect of Plant Growth-Promoting Rhizobacteria on Salicornia ramosissima Seed Germination under Salinity, CO2 and Temperature Stress. Agronomy, 2019, 9, 655.	1.3	38
17	Investigating the mechanisms underlying phytoprotection by plant growthâ€promoting rhizobacteria in <i>Spartina densiflora</i> under metal stress. Plant Biology, 2018, 20, 497-506.	1.8	44
18	PGPR Reduce Root Respiration and Oxidative Stress Enhancing Spartina maritima Root Growth and Heavy Metal Rhizoaccumulation. Frontiers in Plant Science, 2018, 9, 1500.	1.7	61

Ignacio D

#	Article	IF	CITATIONS
19	Kushneria phyllosphaerae sp. nov. and Kushneria endophytica sp. nov., plant growth promoting endophytes isolated from the halophyte plant Arthrocnemum macrostachyum. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 2800-2806.	0.8	18
20	Removal of copper from aqueous solutions by rhizofiltration using genetically modified hairy roots expressing a bacterial Cu-binding protein. Environmental Technology (United Kingdom), 2017, 38, 2877-2888.	1.2	30
21	Bioaugmentation with bacteria selected from the microbiome enhances Arthrocnemum macrostachyum metal accumulation and tolerance. Marine Pollution Bulletin, 2017, 117, 340-347.	2.3	35
22	Double genetically modified symbiotic system for improved Cu phytostabilization in legume roots. Environmental Science and Pollution Research, 2017, 24, 14910-14923.	2.7	25
23	Assessing the role of endophytic bacteria in the halophyte <i>Arthrocnemum macrostachyum</i> salt tolerance. Plant Biology, 2017, 19, 249-256.	1.8	83
24	Modulation of Spartina densiflora plant growth and metal accumulation upon selective inoculation treatments: A comparison of gram negative and gram positive rhizobacteria. Marine Pollution Bulletin, 2017, 125, 77-85.	2.3	24
25	Vibrio palustris sp. nov. and Vibrio spartinae sp. nov., two novel members of the Gazogenes clade, isolated from salt-marsh plants (Arthrocnemum macrostachyum and Spartina maritima). International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 3506-3512.	0.8	20
26	Kocuria salina sp. nov., an actinobacterium isolated from the rhizosphere of the halophyte Arthrocnemum macrostachyum and emended description of Kocuria turfanensis. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 5006-5012.	0.8	15
27	Heavy Metal Pollution Structures Soil Bacterial Community Dynamics in SW Spain Polluted Salt Marshes. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	13
28	Screening beneficial rhizobacteria from Spartina maritima for phytoremediation of metal polluted salt marshes: comparison of gram-positive and gram-negative strains. Environmental Science and Pollution Research, 2016, 23, 19825-19837.	2.7	40
29	Bacterial inoculants for enhanced seed germination of Spartina densiflora: Implications for restoration of metal polluted areas. Marine Pollution Bulletin, 2016, 110, 396-400.	2.3	28
30	Improving Legume–Rhizobium Symbiosis for Copper Phytostabilization Through Genetic Manipulation of Both Symbionts. , 2016, , 183-193.		3
31	Isolation of plant-growth-promoting and metal-resistant cultivable bacteria from Arthrocnemum macrostachyum in the Odiel marshes with potential use in phytoremediation. Marine Pollution Bulletin, 2016, 110, 133-142.	2.3	59
32	Microcystin-tolerant Rhizobium protects plants and improves nitrogen assimilation in Vicia faba irrigated with microcystin-containing waters. Environmental Science and Pollution Research, 2016, 23, 10037-10049.	2.7	15
33	Marinomonas spartinae sp. nov., a novel species with plant-beneficial properties. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 1686-1691.	0.8	20
34	Microbulbifer rhizosphaerae sp. nov., isolated from the rhizosphere of the halophyte Arthrocnemum macrostachyum. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 1844-1850.	0.8	19
35	Labrenzia salina sp. nov., isolated from the rhizosphere of the halophyte Arthrocnemum macrostachyum. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 5173-5180.	0.8	29
36	Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils. Frontiers in Microbiology, 2015, 6, 1450.	1.5	97

Ignacio D

#	Article	IF	CITATIONS
37	Moving closer towards restoration of contaminated estuaries: Bioaugmentation with autochthonous rhizobacteria improves metal rhizoaccumulation in native Spartina maritima. Journal of Hazardous Materials, 2015, 300, 263-271.	6.5	69
38	Effect of Glyphosate on Enzymatic Activities, Rhizobiaceae and Total Bacterial Communities in an Agricultural Tunisian Soil. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	28
39	Deciphering the role of plant growth-promoting rhizobacteria in the tolerance of the invasive cordgrass Spartina densiflora to physicochemical properties of salt-marsh soils. Plant and Soil, 2015, 394, 45-55.	1.8	27
40	Improving legume nodulation and Cu rhizostabilization using a genetically modified rhizobia. Environmental Technology (United Kingdom), 2015, 36, 1237-1245.	1.2	27
41	Unraveling the effect of arsenic on the model M edicago– E nsifer interaction: a transcriptomic metaâ€analysis. New Phytologist, 2015, 205, 255-272.	3.5	42
42	Scouting contaminated estuaries: Heavy metal resistant and plant growth promoting rhizobacteria in the native metal rhizoaccumulator Spartina maritima. Marine Pollution Bulletin, 2015, 90, 150-159.	2.3	70
43	Prospecting metal-resistant plant-growth promoting rhizobacteria for rhizoremediation of metal contaminated estuaries using Spartina densiflora. Environmental Science and Pollution Research, 2014, 21, 3713-3721.	2.7	50
44	Self-bioremediation of cork-processing wastewaters by (chloro)phenol-degrading bacteria immobilised onto residual cork particles. Water Research, 2012, 46, 1723-1734.	5.3	40
45	Taxonomic and symbiotic diversity of bacteria isolated from nodules of <i>Acacia tortilis</i> subsp. <i>raddiana</i> in arid soils of Tunisia. Canadian Journal of Microbiology, 2012, 58, 738-751.	0.8	13
46	Engineering Copper Hyperaccumulation in Plants by Expressing a Prokaryotic <i>copC</i> Gene. Environmental Science & Technology, 2012, 46, 12088-12097.	4.6	17
47	Legume-nodulating bacteria (LNB) from three pasture legumes (Vicia sativa, Trigonella maritima and) Tj ETQq1	1 0.784314 1.1	4 rgBT /Over
48	Characterization of root-nodulating bacteria associated to Prosopis farcta growing in the arid regions of Tunisia. Archives of Microbiology, 2011, 193, 385-397.	1.0	20
49	Cadmium biosorption properties of the metalâ€resistant <i>Ochrobactrum cytisi</i> Azn6.2. Engineering in Life Sciences, 2010, 10, 49-56.	2.0	22
50	Paenibacillus prosopidis sp. nov., isolated from the nodules of Prosopis farcta. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 2182-2186.	0.8	40
51	Reduced nodulation in alfalfa induced by arsenic correlates with altered expression of early nodulins. Journal of Plant Physiology, 2010, 167, 286-291.	1.6	48
52	Expression of the seed-specific metallothionein mt4a in plant vegetative tissues increases Cu and Zn tolerance. Plant Science, 2010, 178, 327-332.	1.7	49
53	The Symbiosis Interactome: a computational approach reveals novel components, functional interactions and modules in Sinorhizobium meliloti. BMC Systems Biology, 2009, 3, 63.	3.0	24
54	Biorhizoremediation of Heavy Metals Toxicity Using Rhizobium-Legume Symbioses. Current Plant Science and Biotechnology in Agriculture, 2008, , 101-104.	0.0	13

Ignacio D

#	Article	IF	CITATIONS
55	Toxic effects of arsenic on Sinorhizobium–Medicago sativa symbiotic interaction. Environmental Pollution, 2008, 154, 203-211.	3.7	121
56	From pollen tubes to infection threads: recruitment ofMedicagofloral pectic genes for symbiosis. Plant Journal, 2004, 39, 587-598.	2.8	42
57	MsPG3 polygalacturonase promoter elements necessary for expression during Sinorhizobium meliloti–Medicago truncatula interaction. Plant and Soil, 2003, 257, 19-26.	1.8	5
58	Expression of MsPG3-GFP fusions in Medicago truncatula'hairy roots' reveals preferential tip localization of the protein in root hairs. FEBS Journal, 2003, 270, 261-269.	0.2	17
59	T-DNA tagging in the model legume Medicago truncatula allows efficient gene discovery. Molecular Breeding, 2002, 10, 203-215.	1.0	53
60	Transformation of floral organs with GFP in Medicago truncatula. Plant Cell Reports, 2000, 19, 647-653.	2.8	42
61	Helping Legumes under Stress Situations: Inoculation with Beneficial Microorganisms. , 0, , .		6