Zachary A Knight

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1254881/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dopamine subsystems that track internal states. Nature, 2022, 608, 374-380.	13.7	54
2	Soma-Targeted Imaging of Neural Circuits by Ribosome Tethering. Neuron, 2020, 107, 454-469.e6.	3.8	58
3	Layers of signals that regulate appetite. Current Opinion in Neurobiology, 2020, 64, 79-88.	2.0	27
4	Obesity causes selective and long-lasting desensitization of AgRP neurons to dietary fat. ELife, 2020, 9,	2.8	70
5	Genetic Identification of Vagal Sensory Neurons That Control Feeding. Cell, 2019, 179, 1129-1143.e23.	13.5	265
6	A gut-to-brain signal of fluid osmolarity controls thirst satiation. Nature, 2019, 568, 98-102.	13.7	98
7	Sustained NPY signaling enables AgRP neurons to drive feeding. ELife, 2019, 8, .	2.8	85
8	A Spotlight on Appetite. Neuron, 2018, 97, 739-741.	3.8	16
9	Regulation of Body Temperature by the Nervous System. Neuron, 2018, 98, 31-48.	3.8	460
10	Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature, 2017, 545, 477-481.	13.7	246
11	Neural circuits underlying thirst and fluid homeostasis. Nature Reviews Neuroscience, 2017, 18, 459-469.	4.9	190
12	Dynamics of Gut-Brain Communication Underlying Hunger. Neuron, 2017, 96, 461-475.e5.	3.8	193
13	Linking smell to metabolism and aging. Science, 2017, 358, 718-719.	6.0	22
14	The Forebrain Thirst Circuit Drives Drinking through Negative Reinforcement. Neuron, 2017, 96, 1272-1281.e4.	3.8	89
15	Making sense of the sensory regulation of hunger neurons. BioEssays, 2016, 38, 316-324.	1.2	54
16	Thirst. Current Biology, 2016, 26, R1260-R1265.	1.8	85
17	Warm-Sensitive Neurons that Control Body Temperature. Cell, 2016, 167, 47-59.e15.	13.5	281
18	Thirst neurons anticipate the homeostatic consequences of eating and drinking. Nature, 2016, 537, 680-684.	13.7	207

ZACHARY A KNIGHT

#	Article	IF	CITATIONS
19	Rapid Sensing of Dietary Amino Acid Deficiency Does Not Require GCN2. Cell Reports, 2016, 16, 2051-2052.	2.9	4
20	Hunger neurons drive feeding through a sustained, positive reinforcement signal. ELife, 2016, 5, .	2.8	142
21	Re-examination of Dietary Amino Acid Sensing Reveals a GCN2-Independent Mechanism. Cell Reports, 2015, 13, 1081-1089.	2.9	32
22	Downregulation of MYCN through PI3K Inhibition in Mouse Models of Pediatric Neural Cancer. Frontiers in Oncology, 2015, 5, 111.	1.3	20
23	Sensory Detection of Food Rapidly Modulates Arcuate Feeding Circuits. Cell, 2015, 160, 829-841.	13.5	489
24	A critical role for mTORC1 in erythropoiesis and anemia. ELife, 2014, 3, e01913.	2.8	67
25	Ablation of AgRP neurons impairs adaption to restricted feeding. Molecular Metabolism, 2014, 3, 694-704.	3.0	63
26	Molecular Profiling of Neurons Based on Connectivity. Cell, 2014, 157, 1230-1242.	13.5	134
27	Molecular Profiling of Activated Neurons by Phosphorylated Ribosome Capture. Cell, 2012, 151, 1126-1137.	13.5	270
28	For a PDK1 inhibitor, the substrate matters. Biochemical Journal, 2011, 433, e1-e2.	1.7	16
29	Discovery of Dual Inhibitors of the Immune Cell PI3Ks p110l̃ and p110l̃ ³ : a Prototype for New Anti-inflammatory Drugs. Chemistry and Biology, 2010, 17, 123-134.	6.2	76
30	Targeting the cancer kinome through polypharmacology. Nature Reviews Cancer, 2010, 10, 130-137.	12.8	618
31	Hyperleptinemia Is Required for the Development of Leptin Resistance. PLoS ONE, 2010, 5, e11376.	1.1	244
32	Small Molecule Inhibitors of the PI3-Kinase Family. Current Topics in Microbiology and Immunology, 2010, 347, 263-278.	0.7	26
33	Active-Site Inhibitors of mTOR Target Rapamycin-Resistant Outputs of mTORC1 and mTORC2. PLoS Biology, 2009, 7, e1000038.	2.6	973
34	Basal Subtype and MAPK/ERK Kinase (MEK)-Phosphoinositide 3-Kinase Feedback Signaling Determine Susceptibility of Breast Cancer Cells to MEK Inhibition. Cancer Research, 2009, 69, 565-572.	0.4	340
35	EGFR Signals to mTOR Through PKC and Independently of Akt in Glioma. Science Signaling, 2009, 2, ra4.	1.6	153
36	lsoform-selective phosphoinositide 3′-kinase inhibitors inhibit CXCR4 signaling and overcome stromal cell–mediated drug resistance in chronic lymphocytic leukemia: a novel therapeutic approach. Blood, 2009, 113, 5549-5557.	0.6	135

ZACHARY A KNIGHT

#	Article	IF	CITATIONS
37	PIK3CA Cooperates with Other Phosphatidylinositol 3′-Kinase Pathway Mutations to Effect Oncogenic Transformation. Cancer Research, 2008, 68, 8127-8136.	0.4	159
38	PI-103, a dual inhibitor of Class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML. Leukemia, 2008, 22, 1698-1706.	3.3	170
39	Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nature Chemical Biology, 2008, 4, 691-699.	3.9	393
40	Discovery of Drug-Resistant and Drug-Sensitizing Mutations in the Oncogenic PI3K Isoform p110α. Cancer Cell, 2008, 14, 180-192.	7.7	95
41	Genetic or pharmaceutical blockade of p110Ĩ phosphoinositide 3-kinase enhances IgE production. Journal of Allergy and Clinical Immunology, 2008, 122, 811-819.e2.	1.5	67
42	T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7797-7802.	3.3	747
43	Design of Drug-Resistant Alleles of Type-III Phosphatidylinositol 4-Kinases Using Mutagenesis and Molecular Modeling. Biochemistry, 2008, 47, 1599-1607.	1.2	33
44	Maintenance of Hormone-sensitive Phosphoinositide Pools in the Plasma Membrane Requires Phosphatidylinositol 4-Kinase IIIα. Molecular Biology of the Cell, 2008, 19, 711-721.	0.9	174
45	Characterization of structurally distinct, isoform-selective phosphoinositide 3′-kinase inhibitors in combination with radiation in the treatment of glioblastoma. Molecular Cancer Therapeutics, 2008, 7, 841-850.	1.9	66
46	Activity of the p110-α subunit of phosphatidylinositol-3-kinase is required for activation of epithelial sodium transport. American Journal of Physiology - Renal Physiology, 2008, 295, F843-F850.	1.3	22
47	Dual Inhibition of PI3Kα and mTOR as an Alternative Treatment for Kaposi's Sarcoma. Cancer Research, 2008, 68, 8361-8368.	0.4	52
48	A chemical screen in diverse breast cancer cell lines reveals genetic enhancers and suppressors of sensitivity to PI3K isoform-selective inhibition. Biochemical Journal, 2008, 415, 97-110.	1.7	123
49	Ablation of PI3K blocks BCR-ABL leukemogenesis in mice, and a dual PI3K/mTOR inhibitor prevents expansion of human BCR-ABL+ leukemia cells. Journal of Clinical Investigation, 2008, 118, 3038-3050.	3.9	148
50	A Dual Phosphoinositide-3-Kinase α/mTOR Inhibitor Cooperates with Blockade of Epidermal Growth Factor Receptor in <i>PTEN</i> -Mutant Glioma. Cancer Research, 2007, 67, 7960-7965.	0.4	199
51	Chemical Genetics: Where Genetics and Pharmacology Meet. Cell, 2007, 128, 425-430.	13.5	228
52	HIV-1 Nef Assembles a Src Family Kinase-ZAP-70/Syk-PI3K Cascade to Downregulate Cell-Surface MHC-I. Cell Host and Microbe, 2007, 1, 121-133.	5.1	90
53	A membrane capture assay for lipid kinase activity. Nature Protocols, 2007, 2, 2459-2466.	5.5	44
54	A Remodelled Protease That Cleaves Phosphotyrosine Substrates. Journal of the American Chemical Society, 2007, 129, 11672-11673.	6.6	20

ZACHARY A KNIGHT

#	Article	IF	CITATIONS
55	PI-103, a Dual Inhibitor of Class I Phosphatidylinositide 3-Kinase and mTOR, Has Anti-Leukemic Activity in Acute Myeloid Leukemia Blood, 2007, 110, 876-876.	0.6	1
56	A Pharmacological Map of the PI3-K Family Defines a Role for p110α in Insulin Signaling. Cell, 2006, 125, 733-747.	13.5	1,074
57	Knock-outs and inhibitors: one and the same?. Blood, 2006, 107, 420-421.	0.6	0
58	A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell, 2006, 9, 341-349.	7.7	575
59	Effect of combined DNA repair inhibition and G2 checkpoint inhibition on cell cycle progression after DNA damage. Molecular Cancer Therapeutics, 2006, 5, 885-892.	1.9	34
60	To stabilize neutrophil polarity, PIP3 and Cdc42 augment RhoA activity at the back as well as signals at the front. Journal of Cell Biology, 2006, 174, 437-445.	2.3	155
61	Phosphatidylinositol 4-Kinase IIIβ Regulates the Transport of Ceramide between the Endoplasmic Reticulum and Golgi. Journal of Biological Chemistry, 2006, 281, 36369-36377.	1.6	120
62	Targeting the gatekeeper residue in phosphoinositide 3-kinases. Bioorganic and Medicinal Chemistry, 2005, 13, 2825-2836.	1.4	64
63	Features of Selective Kinase Inhibitors. Chemistry and Biology, 2005, 12, 621-637.	6.2	582
64	Isoform-specific phosphoinositide 3-kinase inhibitors from an arylmorpholine scaffold. Bioorganic and Medicinal Chemistry, 2004, 12, 4749-4759.	1.4	138
65	Phosphospecific proteolysis for mapping sites of protein phosphorylation. Nature Biotechnology, 2003, 21, 1047-1054.	9.4	237
66	A novel pseudoknot element is essential for the action of a yeast telomerase. Genes and Development, 2003, 17, 1779-1788.	2.7	79