Yuan Liu

List of Publications by Citations

Source: https://exaly.com/author-pdf/1253855/yuan-liu-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

117	14,231	47	119
papers	citations	h-index	g-index
120	17,283 ext. citations	16.8	6.76
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
117	Van der Waals heterostructures and devices. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	1262
116	High-speed graphene transistors with a self-aligned nanowire gate. <i>Nature</i> , 2010 , 467, 305-8	50.4	1031
115	Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. <i>ACS Nano</i> , 2013 , 7, 4042-9	16.7	945
114	Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. <i>Nature Nanotechnology</i> , 2013 , 8, 952-8	28.7	866
113	Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. <i>Nano Letters</i> , 2014 , 14, 5590-7	11.5	782
112	Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. <i>Nature</i> , 2018 , 557, 696-700	50.4	766
111	Graphene: an emerging electronic material. Advanced Materials, 2012, 24, 5782-825	24	603
110	Plasmon resonance enhanced multicolour photodetection by graphene. <i>Nature Communications</i> , 2011 , 2, 579	17.4	546
109	Van der Waals integration before and beyond two-dimensional materials. <i>Nature</i> , 2019 , 567, 323-333	50.4	530
108	Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. <i>Nature Communications</i> , 2013 , 4, 2096	17.4	422
107	Solution-processable 2D semiconductors for high-performance large-area electronics. <i>Nature</i> , 2018 , 562, 254-258	50.4	404
106	Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. <i>Nature Communications</i> , 2014 , 5, 5143	17.4	329
105	Large area growth and electrical properties of p-type WSe2 atomic layers. <i>Nano Letters</i> , 2015 , 15, 709-1	311.5	287
104	Toward barrier free contact to molybdenum disulfide using graphene electrodes. <i>Nano Letters</i> , 2015 , 15, 3030-4	11.5	286
103	Chemical vapor deposition growth of monolayer MoSe2 nanosheets. <i>Nano Research</i> , 2014 , 7, 511-517	10	285
102	Aptamer/AuNP Biosensor for Colorimetric Profiling of Exosomal Proteins. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 11916-11920	16.4	281
101	Aptasensor with Expanded Nucleotide Using DNA Nanotetrahedra for Electrochemical Detection of Cancerous Exosomes. <i>ACS Nano</i> , 2017 , 11, 3943-3949	16.7	264

(2018-2015)

100	Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. <i>Science Advances</i> , 2015 , 1, e1500613	14.3	226
99	High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. <i>ACS Nano</i> , 2012 , 6, 8241-9	16.7	215
98	General synthesis of two-dimensional van der Waals heterostructure arrays. <i>Nature</i> , 2020 , 579, 368-37	4 50.4	195
97	Two-dimensional transistors beyond graphene and TMDCs. <i>Chemical Society Reviews</i> , 2018 , 47, 6388-6	405 8.5	193
96	Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals. <i>Nature Communications</i> , 2016 , 7, 11330	17.4	173
95	van der Waals Heterojunction Devices Based on Organohalide Perovskites and Two-Dimensional Materials. <i>Nano Letters</i> , 2016 , 16, 367-73	11.5	163
94	A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon?. <i>Npj 2D Materials and Applications</i> , 2017 , 1,	8.8	144
93	Promises and prospects of two-dimensional transistors. <i>Nature</i> , 2021 , 591, 43-53	50.4	143
92	Molecular Recognition-Based DNA Nanoassemblies on the Surfaces of Nanosized Exosomes. Journal of the American Chemical Society, 2017 , 139, 5289-5292	16.4	134
91	Highly flexible electronics from scalable vertical thin film transistors. <i>Nano Letters</i> , 2014 , 14, 1413-8	11.5	113
90	Gate-tunable frequency combs in graphene-nitride microresonators. <i>Nature</i> , 2018 , 558, 410-414	50.4	101
89	Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity. <i>Nature Communications</i> , 2013 , 4, 2225	17.4	96
88	High density catalytic hot spots in ultrafine wavy nanowires. <i>Nano Letters</i> , 2014 , 14, 3887-94	11.5	93
87	Pushing the Performance Limit of Sub-100 nm Molybdenum Disulfide Transistors. <i>Nano Letters</i> , 2016 , 16, 6337-6342	11.5	91
86	Broadband gate-tunable terahertz plasmons in graphene heterostructures. <i>Nature Photonics</i> , 2018 , 12, 22-28	33.9	83
85	Efficient strain modulation of 2D materials via polymer encapsulation. <i>Nature Communications</i> , 2020 , 11, 1151	17.4	81
84	Highly-anisotropic optical and electrical properties in layered SnSe. <i>Nano Research</i> , 2018 , 11, 554-564	10	77
83	Synthetic Control of Two-Dimensional NiTe Single Crystals with Highly Uniform Thickness Distributions. <i>Journal of the American Chemical Society</i> , 2018 , 140, 14217-14223	16.4	74

82	Sensitive pressure sensors based on conductive microstructured air-gap gates and two-dimensional semiconductor transistors. <i>Nature Electronics</i> , 2020 , 3, 59-69	28.4	69
81	Few-Layer GeAs Field-Effect Transistors and Infrared Photodetectors. <i>Advanced Materials</i> , 2018 , 30, e1	7 <u>0</u> 5934	1 69
80	Van der Waals epitaxial growth of air-stable CrSe nanosheets with thickness-tunable magnetic order. <i>Nature Materials</i> , 2021 , 20, 818-825	27	68
79	Doping-free complementary WSe circuit via van der Waals metal integration. <i>Nature Communications</i> , 2020 , 11, 1866	17.4	68
78	Scalable fabrication of self-aligned graphene transistors and circuits on glass. <i>Nano Letters</i> , 2012 , 12, 2653-7	11.5	67
77	van der Waals Epitaxial Growth of Atomically Thin 2D Metals on Dangling-Bond-Free WSe2 and WS2. <i>Advanced Functional Materials</i> , 2019 , 29, 1806611	15.6	60
76	Solution processable colloidal nanoplates as building blocks for high-performance electronic thin films on flexible substrates. <i>Nano Letters</i> , 2014 , 14, 6547-53	11.5	60
75	Aptamers against Cells Overexpressing Glypican 3 from Expanded Genetic Systems Combined with Cell Engineering and Laboratory Evolution. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12372-	·5 ^{16.4}	60
74	High-Performance Organic Vertical Thin Film Transistor Using Graphene as a Tunable Contact. <i>ACS Nano</i> , 2015 , 9, 11102-8	16.7	58
73	Perovskite/Black Phosphorus/MoS Photogate Reversed Photodiodes with Ultrahigh Light On/Off Ratio and Fast Response. <i>ACS Nano</i> , 2019 , 13, 4804-4813	16.7	53
72	In situ development of highly concave and composition-confined PtNi octahedra with high oxygen reduction reaction activity and durability. <i>Nano Research</i> , 2016 , 9, 149-157	10	52
71	Tunable Schottky barrier width and enormously enhanced photoresponsivity in Sb doped SnS2 monolayer. <i>Nano Research</i> , 2019 , 12, 463-468	10	50
70	High-order superlattices by rolling up van der Waals heterostructures. <i>Nature</i> , 2021 , 591, 385-390	50.4	47
69	Solvent-Based Soft-Patterning of Graphene Lateral Heterostructures for Broadband High-Speed MetalBemiconductorMetal Photodetectors. <i>Advanced Materials Technologies</i> , 2017 , 2, 1600241	6.8	43
68	Quantum interference mediated vertical molecular tunneling transistors. Science Advances, 2018, 4, each	at8237	43
67	Stretchable synaptic transistors with tunable synaptic behavior. <i>Nano Energy</i> , 2020 , 75, 104952	17.1	40
66	In Situ Probing Molecular Intercalation in Two-Dimensional Layered Semiconductors. <i>Nano Letters</i> , 2019 , 19, 6819-6826	11.5	37
65	Phase-Tunable Synthesis of Ultrathin Layered Tetragonal CoSe and Nonlayered Hexagonal CoSe Nanoplates. <i>Advanced Materials</i> , 2019 , 31, e1900901	24	37

(2018-2019)

64	Quest for p-Type Two-Dimensional Semiconductors. ACS Nano, 2019, 13, 12294-12300	16.7	36
63	Ultrafast growth of large single crystals of monolayer WS and WSe. <i>National Science Review</i> , 2020 , 7, 737-744	10.8	36
62	Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. <i>Nature Electronics</i> , 2021 , 4, 342-347	28.4	36
61	High-Current-Density Vertical-Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures. <i>Advanced Materials</i> , 2016 , 28, 4120-5	24	35
60	High-capacity silicon-air battery in alkaline solution. <i>ChemSusChem</i> , 2012 , 5, 177-80	8.3	35
59	Vertical Charge Transport and Negative Transconductance in Multilayer Molybdenum Disulfides. <i>Nano Letters</i> , 2017 , 17, 5495-5501	11.5	35
58	Chemical Vapor Deposition Growth of Single Crystalline CoTe2 Nanosheets with Tunable Thickness and Electronic Properties. <i>Chemistry of Materials</i> , 2018 , 30, 8891-8896	9.6	30
57	Aptamer-based multifunctional ligand-modified UCNPs for targeted PDT and bioimaging. <i>Nanoscale</i> , 2018 , 10, 10986-10990	7.7	29
56	Direct van der Waals epitaxial growth of 1D/2D Sb2Se3/WS2 mixed-dimensional p-n heterojunctions. <i>Nano Research</i> , 2019 , 12, 1139-1145	10	28
55	Self-Assembled Molecular-Electronic Films Controlled by Room Temperature Quantum Interference. <i>CheM</i> , 2019 , 5, 474-484	16.2	28
54	2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges <i>Chemical Reviews</i> , 2022 ,	68.1	28
53	Vapor phase growth of two-dimensional PdSe2 nanosheets for high-photoresponsivity near-infrared photodetectors. <i>Nano Research</i> , 2020 , 13, 2091-2097	10	26
52	Programmable devices based on reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. <i>Nature Electronics</i> , 2020 , 3, 630-637	28.4	26
51	High-performance asymmetric electrodes photodiode based on Sb/WSe2 heterostructure. <i>Nano Research</i> , 2019 , 12, 339-344	10	25
50	Three-dimensional graphene membrane cathode for high energy density rechargeable lithium-air batteries in ambient conditions. <i>Nano Research</i> , 2017 , 10, 472-482	10	23
49	Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. <i>Nature Nanotechnology</i> , 2020 , 15, 768-775	28.7	23
48	Highly Reliable Low-Voltage Memristive Switching and Artificial Synapse Enabled by van der Waals Integration. <i>Matter</i> , 2020 , 2, 965-976	12.7	22
47	Two-dimensional plumbum-doped tin diselenide monolayer transistor with high on/off ratio. Nanotechnology, 2018 , 29, 474002	3.4	22

46	Rational design of AlO/2D perovskite heterostructure dielectric for high performance MoS phototransistors. <i>Nature Communications</i> , 2020 , 11, 4266	17.4	21
45	van der Waals epitaxial growth of ultrathin metallic NiSe nanosheets on WSe2 as high performance contacts for WSe2 transistors. <i>Nano Research</i> , 2019 , 12, 1683-1689	10	20
44	Interface engineering for two-dimensional semiconductor transistors. <i>Nano Today</i> , 2019 , 25, 122-134	17.9	20
43	On-Chip in Situ Monitoring of Competitive Interfacial Anionic Chemisorption as a Descriptor for Oxygen Reduction Kinetics. <i>ACS Central Science</i> , 2018 , 4, 590-599	16.8	19
42	Plasmonic/Nonlinear Optical Material Core/Shell Nanorods as Nanoscale Plasmon Modulators and Optical Voltage Sensors. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 583-7	16.4	19
41	Ambipolar Barristors for Reconfigurable Logic Circuits. <i>Nano Letters</i> , 2017 , 17, 1448-1454	11.5	18
40	High-Performance Organic Electrochemical Transistors with Nanoscale Channel Length and Their Application to Artificial Synapse. <i>ACS Applied Materials & Description of Application and Their Applicat</i>	9.5	18
39	An Electrically Controlled Wavelength-Tunable Nanoribbon Laser. ACS Nano, 2020, 14, 3397-3404	16.7	17
38	Ultrasensitive Organic-Modulated CsPbBr3 Quantum Dot Photodetectors via Fast Interfacial Charge Transfer. <i>Advanced Materials Interfaces</i> , 2020 , 7, 1901741	4.6	17
37	High-Performance Photoinduced Memory with Ultrafast Charge Transfer Based on MoS /SWCNTs Network Van Der Waals Heterostructure. <i>Small</i> , 2019 , 15, e1804661	11	17
36	All-Two-Dimensional-Material Hot Electron Transistor. <i>IEEE Electron Device Letters</i> , 2018 , 39, 634-637	4.4	14
35	Highly Sensitive Chemical Detection with Tunable Sensitivity and Selectivity from Ultrathin Platinum Nanowires. <i>Small</i> , 2017 , 13, 1602969	11	14
34	Graphene-based vertical thin film transistors. Science China Information Sciences, 2020, 63, 1	3.4	14
33	Electrically controllable laser frequency combs in graphene-fibre microresonators. <i>Light: Science and Applications</i> , 2020 , 9, 185	16.7	14
32	Long-Range Hierarchical Nanocrystal Assembly Driven by Molecular Structural Transformation. Journal of the American Chemical Society, 2019 , 141, 1498-1505	16.4	14
31	Maximizing the Current Output in Self-Aligned Graphene-InAs-Metal Vertical Transistors. <i>ACS Nano</i> , 2019 , 13, 847-854	16.7	14
30	Possible Luttinger liquid behavior of edge transport in monolayer transition metal dichalcogenide crystals. <i>Nature Communications</i> , 2020 , 11, 659	17.4	12
29	Domain wall motion in synthetic Co2Si nanowires. <i>Nano Letters</i> , 2012 , 12, 1972-6	11.5	12

28	Kirigami-inspired multiscale patterning of metallic structures via predefined nanotrench templates. <i>Microsystems and Nanoengineering</i> , 2019 , 5, 54	7.7	11
27	In-plane epitaxial growth of 2D CoSe-WSe2 metal-semiconductor lateral heterostructures with improved WSe2 transistors performance. <i>Informall Materilly</i> , 2021 , 3, 222-228	23.1	11
26	A paper-based SERS assay for sensitive duplex cytokine detection towards the atherosclerosis-associated disease diagnosis. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 3582-3589	7.3	10
25	Reconfigurable electronics by disassembling and reassembling van der Waals heterostructures. <i>Nature Communications</i> , 2021 , 12, 1825	17.4	10
24	Reliable Patterning, Transfer Printing and Post-Assembly of Multiscale Adhesion-Free Metallic Structures for Nanogap Device Applications. <i>Advanced Functional Materials</i> , 2020 , 30, 2002549	15.6	9
23	Microfluidic solution-processed organic and perovskite nanowires fabricated for field-effect transistors and photodetectors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 2353-2362	7.1	9
22	Prediction of Stable and High-Performance Charge Transport in Zigzag Tellurene Nanoribbons. <i>IEEE Transactions on Electron Devices</i> , 2019 , 66, 2365-2369	2.9	8
21	Recent progresses of NMOS and CMOS logic functions based on two-dimensional semiconductors. <i>Nano Research</i> , 2021 , 14, 1768-1783	10	8
20	Band-Offset Degradation in van der Waals Heterojunctions. <i>Physical Review Applied</i> , 2019 , 12,	4.3	7
19	MetalBemiconductor transition in atomically thin Bi2Sr2Co2O8 nanosheets. <i>APL Materials</i> , 2014 , 2, 092	5 9 . 7/	6
18	Highly Selective Synthesis of Monolayer or Bilayer WSe2 Single Crystals by Pre-annealing the Solid Precursor. <i>Chemistry of Materials</i> , 2021 , 33, 1307-1313	9.6	6
17	Sub-kT/q switching in InO nanowire negative capacitance field-effect transistors. <i>Nanoscale</i> , 2018 , 10, 19131-19139	7.7	6
16	A field-effect approach to directly profiling the localized states in monolayer MoS2. <i>Science Bulletin</i> , 2019 , 64, 1049-1055	10.6	5
15	Dry Exfoliation of Large-Area 2D Monolayer and Heterostructure Arrays. ACS Nano, 2021,	16.7	5
14	Exploring and suppressing the kink effect of black phosphorus field-effect transistors operating in the saturation regime. <i>Nanoscale</i> , 2019 , 11, 10420-10428	7.7	4
13	Efficient modulation of MoS2/WSe2 interlayer excitons via uniaxial strain. <i>Applied Physics Letters</i> , 2022 , 120, 053107	3.4	4
12	High-Resolution Van der Waals Stencil Lithography for 2D Transistors. <i>Small</i> , 2021 , 17, e2101209	11	4
11	Low voltage and robust InSe memristor using van der Waals electrodes integration. <i>International Journal of Extreme Manufacturing</i> ,	7.9	4

10	Ultimate dielectric scaling of 2D transistors via van der Waals metal integration. Nano Research,1	10	4
9	Visualizing Band Profiles of Gate-Tunable Junctions in MoS/WSe Heterostructure Transistors. <i>ACS Nano</i> , 2021 , 15, 16314-16321	16.7	3
8	Gate-tunable linear magnetoresistance in molybdenum disulfide field-effect transistors with graphene insertion layer. <i>Nano Research</i> , 2021 , 14, 1814-1818	10	3
7	Strain-Plasmonic Coupled Broadband Photodetector Based on Monolayer MoS <i>Small</i> , 2022 , e2107104	11	3
6	Ultra-high current gain tunneling hot-electron transfer amplifier based on vertical van der Waals heterojunctions. <i>Nano Research</i> , 2020 , 13, 2085-2090	10	2
5	Quantitative Surface Plasmon Interferometry via Upconversion Photoluminescence Mapping. <i>Research</i> , 2019 , 2019, 8304824	7.8	2
4	High-Density Reconfigurable Synaptic Transistors Targeting a Minimalist Neural Network. <i>ACS Applied Materials & Description (Neuronal Network)</i> 13, 28564-28573	9.5	2
3	Origin of low-temperature negative transconductance in multilayer MoS2 transistors. <i>Applied Physics Letters</i> , 2021 , 119, 043502	3.4	1
2	Electronic Fluctuation of Graphene Nanoribbon MOSFETs Under a Full Quantum Dynamics Framework. <i>IEEE Transactions on Electron Devices</i> , 2021 , 68, 1980-1985	2.9	О
1	51.4: Invited Paper: High Performance Flexible TFTs from Oxide/Carbon Heterostructures. <i>Digest of Technical Papers SID International Symposium</i> , 2015 , 46, 775-777	0.5	