Miroslaw Janowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/125342/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Manganese-Labeled Alginate Hydrogels for Image-Guided Cell Transplantation. International Journal of Molecular Sciences, 2022, 23, 2465.	1.8	5
2	Oxidative Stress-induced Autophagy Compromises Stem Cell Viability. Stem Cells, 2022, 40, 468-478.	1.4	13
3	Hyperosmolar blood–brain barrier opening using intra-arterial injection of hyperosmotic mannitol in mice under real-time MRI guidance. Nature Protocols, 2022, 17, 76-94.	5.5	26
4	A Primeval Mechanism of Tolerance to Desiccation Based on Glycolic Acid Saves Neurons in Mammals from Ischemia by Reducing Intracellular Calciumâ€Mediated Excitotoxicity. Advanced Science, 2022, 9, e2103265.	5.6	7
5	Transplantation of Human Clial Progenitors to Immunodeficient Neonatal Mice with Amyotrophic Lateral Sclerosis (SOD1/rag2). Antioxidants, 2022, 11, 1050.	2.2	2
6	The legacy of mRNA engineering: A lineup of pioneers for the Nobel Prize. Molecular Therapy - Nucleic Acids, 2022, 29, 272-284.	2.3	7
7	Neuroinflammation evoked by brain injury in a rat model of lacunar infarct. Experimental Neurology, 2021, 336, 113531.	2.0	11
8	Imaging as a tool to accelerate the translation of extracellular vesicleâ€based therapies for central nervous system diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1688.	3.3	4
9	Mesenchymal Stem Cells for Neurological Disorders. Advanced Science, 2021, 8, 2002944.	5.6	160
10	Intra-arterial transplantation of stem cells in large animals as a minimally-invasive strategy for the treatment of disseminated neurodegeneration. Scientific Reports, 2021, 11, 6581.	1.6	6
11	Stretching the Spring of Endovascular Opportunity in Stroke. Stroke, 2021, 52, 850-851.	1.0	Ο
12	Traumatic brain injury does not disrupt costimulatory blockade-induced immunological tolerance to glial-restricted progenitor allografts. Journal of Neuroinflammation, 2021, 18, 104.	3.1	3
13	The COVIDâ€19 Menace. Global Challenges, 2021, 5, 2100004.	1.8	5
14	White matter demyelination predates axonal injury after ischemic stroke in cynomolgus monkeys. Experimental Neurology, 2021, 340, 113655.	2.0	9
15	Mesenchymal Stem Cells Do Not Lose Direct Labels Including Iron Oxide Nanoparticles and DFO-89Zr Chelates through Secretion of Extracellular Vesicles. Membranes, 2021, 11, 484.	1.4	0
16	Two in One: Use of Divalent Manganese Ions as Both Cross-Linking and MRI Contrast Agent for Intrathecal Injection of Hydrogel-Embedded Stem Cells. Pharmaceutics, 2021, 13, 1076.	2.0	9
17	Mesenchymal stem cells in glioblastoma therapy and progression: How one cell does it all. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188582.	3.3	22
18	Oxidative Stress Enhances Autophagy-Mediated Death Of Stem Cells Through Erk1/2 Signaling Pathway – Implications For Neurotransplantations. Stem Cell Reviews and Reports, 2021, 17, 2347-2358.	1.7	15

MIROSLAW JANOWSKI

#	Article	IF	CITATIONS
19	Follow-up of intra-arterial delivery of bevacizumab for treatment of butterfly glioblastoma in patient with first-in-human, real-time MRI-guided intra-arterial neurointervention. Journal of NeuroInterventional Surgery, 2021, 13, 1037-1039.	2.0	4
20	Deuterium oxide as a contrast medium for real-time MRI-guided endovascular neurointervention. Theranostics, 2021, 11, 6240-6250.	4.6	7
21	New Mechanistic Insights, Novel Treatment Paradigms, and Clinical Progress in Cerebrovascular Diseases. Frontiers in Aging Neuroscience, 2021, 13, 623751.	1.7	17
22	Myelin-Independent Therapeutic Potential of Canine Glial-Restricted Progenitors Transplanted in Mouse Model of Dysmyelinating Disease. Cells, 2021, 10, 2968.	1.8	2
23	Biomarker Application for Precision Medicine in Stroke. Translational Stroke Research, 2020, 11, 615-627.	2.3	57
24	Optimization of osmotic blood-brain barrier opening to enable intravital microscopy studies on drug delivery in mouse cortex. Journal of Controlled Release, 2020, 317, 312-321.	4.8	35
25	Neuroinflammation After Stereotactic Radiosurgery-Induced Brain Tumor Disintegration Is Linked to Persistent Cognitive Decline in a Mouse Model of Metastatic Disease. International Journal of Radiation Oncology Biology Physics, 2020, 108, 745-757.	0.4	7
26	Methacrylated gellan gum and hyaluronic acid hydrogel blends for image-guided neurointerventions. Journal of Materials Chemistry B, 2020, 8, 5928-5937.	2.9	21
27	Mesenchymal stem cells injected into carotid artery to target focal brain injury home to perivascular space. Theranostics, 2020, 10, 6615-6628.	4.6	25
28	Modeling human pediatric and adult gliomas in immunocompetent mice through costimulatory blockade. Oncolmmunology, 2020, 9, 1776577.	2.1	8
29	Editorial: Cell-based Therapies for Stroke: Promising Solution or Dead End?. Frontiers in Neurology, 2020, 11, 171.	1.1	2
30	Microfluidic Systems in CNS Studies. Advances in Experimental Medicine and Biology, 2020, 1230, 87-95.	0.8	3
31	Intra-arterial Administration of Human Umbilical Cord Blood Derived Cells Inversed Learning Asymmetry Resulting From Focal Brain Injury in Rat. Frontiers in Neurology, 2019, 10, 786.	1.1	2
32	Proteolytic Rafts for Improving Intraparenchymal Migration of Minimally Invasively Administered Hydrogel-Embedded Stem Cells. International Journal of Molecular Sciences, 2019, 20, 3083.	1.8	3
33	Labeling of human mesenchymal stem cells with different classes of vital stains: robustness and toxicity. Stem Cell Research and Therapy, 2019, 10, 187.	2.4	19
34	Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles. Journal of Neuroinflammation, 2019, 16, 178.	3.1	200
35	Real-time MRI guidance for intra-arterial drug delivery in a patient with a brain tumor: technical note. BMJ Case Reports, 2019, 12, bcr-2018-014469.	0.2	19
36	PET imaging of distinct brain uptake of a nanobody and similarly-sized PAMAM dendrimers after intra-arterial administration. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1940-1951.	3.3	33

Miroslaw Janowski

#	Article	IF	CITATIONS
37	Muscular Contribution to Adolescent Idiopathic Scoliosis from the Perspective of Stem Cell-Based Regenerative Medicine. Stem Cells and Development, 2019, 28, 1059-1077.	1.1	7
38	Republished: Real-time MRI guidance for intra-arterial drug delivery in a patient with a brain tumor: technical note. Journal of NeuroInterventional Surgery, 2019, 11, e3-e3.	2.0	4
39	The Role of Glia in Canine Degenerative Myelopathy: Relevance to Human Amyotrophic Lateral Sclerosis. Molecular Neurobiology, 2019, 56, 5740-5748.	1.9	18
40	In Vitro Assessment of Fluorine Nanoemulsion-Labeled Hyaluronan-Based Hydrogels for Precise Intrathecal Transplantation of Glial-Restricted Precursors. Molecular Imaging and Biology, 2019, 21, 1071-1078.	1.3	9
41	Concise Review: Mesenchymal Stem Cells: From Roots to Boost. Stem Cells, 2019, 37, 855-864.	1.4	379
42	Biodistribution of Glial Progenitors in a Three Dimensional-Printed Model of the Piglet Cerebral Ventricular System. Stem Cells and Development, 2019, 28, 515-527.	1.1	1
43	Human bone marrow mesenchymal stem cell-derived extracellular vesicles attenuate neuroinflammation evoked by focal brain injury in rats. Journal of Neuroinflammation, 2019, 16, 216.	3.1	94
44	Single-cell, high-throughput analysis of cell docking to vessel wall. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 2308-2320.	2.4	13
45	A Distinct Advantage to Intraarterial Delivery of ⁸⁹ Zr-Bevacizumab in PET Imaging of Mice With and Without Osmotic Opening of the Blood–Brain Barrier. Journal of Nuclear Medicine, 2019, 60, 617-622.	2.8	49
46	Chemobrain as a Product of Growing Success in Chemotherapy - Focus On Glia As Both A Victim And A Cure. Neuropsychiatry, 2019, 09, 2207-2216.	0.4	20
47	Intra-Arterial Delivery of Cell Therapies for Stroke. Stroke, 2018, 49, 1075-1082.	1.0	75
48	Hydrogel-based scaffolds to support intrathecal stem cell transplantation as a gateway to the spinal cord: clinical needs, biomaterials, and imaging technologies. Npj Regenerative Medicine, 2018, 3, 8.	2.5	51
49	Low-Dose Atropine for Myopia Control—Reply. JAMA Ophthalmology, 2018, 136, 303.	1.4	3
50	Migratory potential of transplanted glial progenitors as critical factor for successful translation of glia replacement therapy: The gap between mice and men. Glia, 2018, 66, 907-919.	2.5	9
51	Overexpression of VLA-4 in glial-restricted precursors enhances their endothelial docking and induces diapedesis in a mouse stroke model. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 835-846.	2.4	24
52	Sphingolipids and microRNA Changes in Blood following Blast Traumatic Brain Injury: An Exploratory Study. Journal of Neurotrauma, 2018, 35, 353-361.	1.7	25
53	MRI-guided intrathecal transplantation of hydrogel-embedded glial progenitors in large animals. Scientific Reports, 2018, 8, 16490.	1.6	22
54	Real-Time MRI Guidance for Reproducible Hyperosmolar Opening of the Blood-Brain Barrier in Mice. Frontiers in Neurology, 2018, 9, 921.	1.1	28

MIROSLAW JANOWSKI

#	Article	IF	CITATIONS
55	MRI-guided intracerebral convection-enhanced injection of gliotoxins to induce focal demyelination in swine. PLoS ONE, 2018, 13, e0204650.	1.1	8
56	Imaging of extracellular vesicles derived from human bone marrow mesenchymal stem cells using fluorescent and magnetic labels. International Journal of Nanomedicine, 2018, Volume 13, 1653-1664.	3.3	64
57	Transplanted human glial-restricted progenitors can rescue the survival of dysmyelinated mice independent of the production of mature, compact myelin. Experimental Neurology, 2017, 291, 74-86.	2.0	35
58	Real-Time Dual MRI for Predicting and Subsequent Validation of Intra-Arterial Stem Cell Delivery to the Central Nervous System. Neuromethods, 2017, , 175-191.	0.2	0
59	Efficacy and Adverse Effects of Atropine in Childhood Myopia. JAMA Ophthalmology, 2017, 135, 624.	1.4	167
60	Translation, but not transfection limits clinically relevant, exogenous mRNA based induction of alpha-4 integrin expression on human mesenchymal stem cells. Scientific Reports, 2017, 7, 1103.	1.6	23
61	Transplanted adipose-derived stem cells can be short-lived yet accelerate healing of acid-burn skin wounds: a multimodal imaging study. Scientific Reports, 2017, 7, 4644.	1.6	38
62	Rasgrf1 mRNA expression in myopic eyes of guinea pigs. Australasian journal of optometry, The, 2017, 100, 174-178.	0.6	5
63	In Vivo Micro-CT Imaging of Human Mesenchymal Stem Cells Labeled with Gold-Poly- <scp>l</scp> -Lysine Nanocomplexes. Advanced Functional Materials, 2017, 27, 1604213.	7.8	95
64	Real-time MRI for precise and predictable intra-arterial stem cell delivery to the central nervous system. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2346-2358.	2.4	63
65	Rabbit Model of Human Gliomas: Implications for Intra-Arterial Drug Delivery. PLoS ONE, 2017, 12, e0169656.	1.1	12
66	An immunocompetent mouse model of human glioblastoma. Oncotarget, 2017, 8, 61072-61082.	0.8	30
67	Genetic Engineering of Mesenchymal Stem Cells to Induce Their Migration and Survival. Stem Cells International, 2016, 2016, 1-9.	1.2	50
68	Extracellular Vesicles in Physiology, Pathology, and Therapy of the Immune and Central Nervous System, with Focus on Extracellular Vesicles Derived from Mesenchymal Stem Cells as Therapeutic Tools. Frontiers in Cellular Neuroscience, 2016, 10, 109.	1.8	152
69	Label-free CEST MRI Detection of Citicoline-Liposome Drug Delivery in Ischemic Stroke. Theranostics, 2016, 6, 1588-1600.	4.6	74
70	Predicting and optimizing the territory of blood–brain barrier opening by superselective intra-arterial cerebral infusion under dynamic susceptibility contrast MRI guidance. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 569-575.	2.4	40
71	Imaging the DNA Alkylator Melphalan by CEST MRI: An Advanced Approach to Theranostics. Molecular Pharmaceutics, 2016, 13, 3043-3053.	2.3	20
72	Engineered Mesenchymal Stem Cells as an Anti-Cancer Trojan Horse. Stem Cells and Development, 2016, 25, 1513-1531.	1.1	47

Miroslaw Janowski

#	Article	IF	CITATIONS
73	Short-Lived Human Umbilical Cord-Blood-Derived Neural Stem Cells Influence the Endogenous Secretome and Increase the Number of Endogenous Neural Progenitors in a Rat Model of Lacunar Stroke. Molecular Neurobiology, 2016, 53, 6413-6425.	1.9	17
74	Concise Review: Using Stem Cells to Prevent the Progression of Myopia—A Concept. Stem Cells, 2015, 33, 2104-2113.	1.4	23
75	The cerebral embolism evoked by intra-arterial delivery of allogeneic bone marrow mesenchymal stem cells in rats is related to cell dose and infusion velocity. Stem Cell Research and Therapy, 2015, 6, 11.	2.4	153
76	Pre- and postmortem imaging of transplanted cells. International Journal of Nanomedicine, 2015, 10, 5543.	3.3	11
77	Complex assessment of distinct cognitive impairments following ouabain injection into the rat dorsoloateral striatum. Behavioural Brain Research, 2015, 289, 133-140.	1.2	8
78	Stem Cell–Based Tissue Replacement After Stroke. Stroke, 2015, 46, 2354-2363.	1.0	80
79	Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine. Stem Cells and Development, 2015, 24, 2219-2242.	1.1	29
80	Effect of MRI tags: SPIO nanoparticles and 19F nanoemulsion on various populations of mouse mesenchymal stem cells. Acta Neurobiologiae Experimentalis, 2015, 75, 144-59.	0.4	17
81	Long-Term MRI Cell Tracking after Intraventricular Delivery in a Patient with Global Cerebral Ischemia and Prospects for Magnetic Navigation of Stem Cells within the CSF. PLoS ONE, 2014, 9, e97631.	1.1	55
82	Porous tantalum and tantalum oxide nanoparticles for regenerative medicine. Acta Neurobiologiae Experimentalis, 2014, 74, 188-96.	0.4	33
83	Cell Size and Velocity of Injection are Major Determinants of the Safety of Intracarotid Stem Cell Transplantation. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 921-927.	2.4	130
84	MR Monitoring of Minimally Invasive Delivery of Mesenchymal Stem Cells into the Porcine Intervertebral Disc. PLoS ONE, 2013, 8, e74658.	1.1	30
85	Genetic engineering of stem cells for enhanced therapy. Acta Neurobiologiae Experimentalis, 2013, 73, 1-18.	0.4	41
86	Noninvasive Monitoring of Immunosuppressive Drug Efficacy to Prevent Rejection of Intracerebral Glial Precursor Allografts. Cell Transplantation, 2012, 21, 2149-2157.	1.2	15
87	Personalized nanomedicine advancements for stem cell tracking. Advanced Drug Delivery Reviews, 2012, 64, 1488-1507.	6.6	70
88	Intravenous Fluid Administration May Improve Post-Operative Course of Patients with Chronic Subdural Hematoma: A Retrospective Study. PLoS ONE, 2012, 7, e35634.	1.1	13
89	Migratory capabilities of human umbilical cord blood-derived neural stem cells (HUCB-NSC) in vitro. Acta Neurobiologiae Experimentalis, 2011, 71, 24-35.	0.4	9
90	Intracerebroventricular Transplantation of Cord Blood-Derived Neural Progenitors in a Child with Severe Global Brain Ischemic Injury. Cell Medicine, 2010, 1, 71-80.	5.0	41

#	Article	IF	CITATIONS
91	Intravenous Route of Cell Delivery for Treatment of Neurological Disorders: A Meta-Analysis of Preclinical Results. Stem Cells and Development, 2010, 19, 5-16.	1.1	77
92	Systemic Neurotransplantation - A Problem-Oriented Systematic Review. Reviews in the Neurosciences, 2009, 20, 39-60.	1.4	16
93	Functional diversity of SDF-1 splicing variants. Cell Adhesion and Migration, 2009, 3, 243-249.	1.1	105
94	Structural and functional characteristic of a model for deep-seated lacunar infarct in rats. Journal of the Neurological Sciences, 2008, 273, 40-48.	0.3	19
95	Neurotransplantation in mice: The concorde-like position ensures minimal cell leakage and widespread distribution of cells transplanted into the cisterna magna. Neuroscience Letters, 2008, 430, 169-174.	1.0	18